Loading…

Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth

In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effe...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2022-09, Vol.22 (19), p.12769-12787
Main Authors: Gohil, Kanishk, Mao, Chun-Ning, Rastogi, Dewansh, Peng, Chao, Tang, Mingjin, Asa-Awuku, Akua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73
cites cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73
container_end_page 12787
container_issue 19
container_start_page 12769
container_title Atmospheric chemistry and physics
container_volume 22
creator Gohil, Kanishk
Mao, Chun-Ning
Rastogi, Dewansh
Peng, Chao
Tang, Mingjin
Asa-Awuku, Akua
description In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.
doi_str_mv 10.5194/acp-22-12769-2022
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720371315</galeid><doaj_id>oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170</doaj_id><sourcerecordid>A720371315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</originalsourceid><addsrcrecordid>eNptkk1P3DAQhqOqlaDQH8AtUk8cAv5KHB8RKmUlJKTC3ZrYk-BVNg62V7D_HoetoCtVPng-nnnlkd-iOKPkoqZKXIKZK8YqymSjKkYY-1Ic06YlleRMfP0nPiq-x7gmhNWEiuMCbnddcLZ8gYShBBt9mJPzUwmTLaMft50bXdqVM4TkloabhrL3GcXgc7982g05MH52ZuGWMRv8PGIqc-MlPZ0W33oYI_74e58Ujze_Hq9vq7v736vrq7vKiJanqhe8NaKuEUynQEFNFJquY13NJJqco2QtASUE2EYojqoRvG4ISgM9Sn5SrPay1sNaz8FtIOy0B6ffCz4MelnBjKihIwypNdTKRrTYKmJs2wvZWUkaKknW-rnXmoN_3mJMeu23Ycqv10xSxQnhtPmkBsiibup9CmA2Lhp9JRnhknJaZ-riP1Q-FjfO-Al7l-sHA-cHA5lJ-JoG2MaoVw9_Dlm6Z03-gxiw_1icEr34QmdfaMb0uy_04gv-BgGzqwc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719300316</pqid></control><display><type>article</type><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</creator><creatorcontrib>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</creatorcontrib><description>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-22-12769-2022</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Acids ; Adsorbed water ; Adsorption ; Aerosols ; Atmospheric aerosols ; Benzene ; Cloud condensation nuclei ; Comparative analysis ; Condensation nuclei ; Droplets ; Frameworks ; Growth ; Hygroscopicity ; Isomers ; Parameters ; Phthalates ; Phthalic acid ; Polycarboxylic acids ; Solubility ; Solutes ; Terephthalic acid ; Uptake ; Water ; Water uptake</subject><ispartof>Atmospheric chemistry and physics, 2022-09, Vol.22 (19), p.12769-12787</ispartof><rights>COPYRIGHT 2022 Copernicus GmbH</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</citedby><cites>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</cites><orcidid>0000-0002-0354-8368 ; 0000-0002-8756-8445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2719300316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2719300316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gohil, Kanishk</creatorcontrib><creatorcontrib>Mao, Chun-Ning</creatorcontrib><creatorcontrib>Rastogi, Dewansh</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tang, Mingjin</creatorcontrib><creatorcontrib>Asa-Awuku, Akua</creatorcontrib><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><title>Atmospheric chemistry and physics</title><description>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</description><subject>Acids</subject><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Benzene</subject><subject>Cloud condensation nuclei</subject><subject>Comparative analysis</subject><subject>Condensation nuclei</subject><subject>Droplets</subject><subject>Frameworks</subject><subject>Growth</subject><subject>Hygroscopicity</subject><subject>Isomers</subject><subject>Parameters</subject><subject>Phthalates</subject><subject>Phthalic acid</subject><subject>Polycarboxylic acids</subject><subject>Solubility</subject><subject>Solutes</subject><subject>Terephthalic acid</subject><subject>Uptake</subject><subject>Water</subject><subject>Water uptake</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1P3DAQhqOqlaDQH8AtUk8cAv5KHB8RKmUlJKTC3ZrYk-BVNg62V7D_HoetoCtVPng-nnnlkd-iOKPkoqZKXIKZK8YqymSjKkYY-1Ic06YlleRMfP0nPiq-x7gmhNWEiuMCbnddcLZ8gYShBBt9mJPzUwmTLaMft50bXdqVM4TkloabhrL3GcXgc7982g05MH52ZuGWMRv8PGIqc-MlPZ0W33oYI_74e58Ujze_Hq9vq7v736vrq7vKiJanqhe8NaKuEUynQEFNFJquY13NJJqco2QtASUE2EYojqoRvG4ISgM9Sn5SrPay1sNaz8FtIOy0B6ffCz4MelnBjKihIwypNdTKRrTYKmJs2wvZWUkaKknW-rnXmoN_3mJMeu23Ycqv10xSxQnhtPmkBsiibup9CmA2Lhp9JRnhknJaZ-riP1Q-FjfO-Al7l-sHA-cHA5lJ-JoG2MaoVw9_Dlm6Z03-gxiw_1icEr34QmdfaMb0uy_04gv-BgGzqwc</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Gohil, Kanishk</creator><creator>Mao, Chun-Ning</creator><creator>Rastogi, Dewansh</creator><creator>Peng, Chao</creator><creator>Tang, Mingjin</creator><creator>Asa-Awuku, Akua</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0354-8368</orcidid><orcidid>https://orcid.org/0000-0002-8756-8445</orcidid></search><sort><creationdate>20220930</creationdate><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><author>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Benzene</topic><topic>Cloud condensation nuclei</topic><topic>Comparative analysis</topic><topic>Condensation nuclei</topic><topic>Droplets</topic><topic>Frameworks</topic><topic>Growth</topic><topic>Hygroscopicity</topic><topic>Isomers</topic><topic>Parameters</topic><topic>Phthalates</topic><topic>Phthalic acid</topic><topic>Polycarboxylic acids</topic><topic>Solubility</topic><topic>Solutes</topic><topic>Terephthalic acid</topic><topic>Uptake</topic><topic>Water</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gohil, Kanishk</creatorcontrib><creatorcontrib>Mao, Chun-Ning</creatorcontrib><creatorcontrib>Rastogi, Dewansh</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tang, Mingjin</creatorcontrib><creatorcontrib>Asa-Awuku, Akua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohil, Kanishk</au><au>Mao, Chun-Ning</au><au>Rastogi, Dewansh</au><au>Peng, Chao</au><au>Tang, Mingjin</au><au>Asa-Awuku, Akua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2022-09-30</date><risdate>2022</risdate><volume>22</volume><issue>19</issue><spage>12769</spage><epage>12787</epage><pages>12769-12787</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-22-12769-2022</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0354-8368</orcidid><orcidid>https://orcid.org/0000-0002-8756-8445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2022-09, Vol.22 (19), p.12769-12787
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Acids
Adsorbed water
Adsorption
Aerosols
Atmospheric aerosols
Benzene
Cloud condensation nuclei
Comparative analysis
Condensation nuclei
Droplets
Frameworks
Growth
Hygroscopicity
Isomers
Parameters
Phthalates
Phthalic acid
Polycarboxylic acids
Solubility
Solutes
Terephthalic acid
Uptake
Water
Water uptake
title Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20water%20adsorption%20and%20solubility%20partitioning%20for%20aerosol%20hygroscopicity%20and%20droplet%20growth&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Gohil,%20Kanishk&rft.date=2022-09-30&rft.volume=22&rft.issue=19&rft.spage=12769&rft.epage=12787&rft.pages=12769-12787&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-22-12769-2022&rft_dat=%3Cgale_doaj_%3EA720371315%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719300316&rft_id=info:pmid/&rft_galeid=A720371315&rfr_iscdi=true