Loading…
Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth
In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effe...
Saved in:
Published in: | Atmospheric chemistry and physics 2022-09, Vol.22 (19), p.12769-12787 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73 |
container_end_page | 12787 |
container_issue | 19 |
container_start_page | 12769 |
container_title | Atmospheric chemistry and physics |
container_volume | 22 |
creator | Gohil, Kanishk Mao, Chun-Ning Rastogi, Dewansh Peng, Chao Tang, Mingjin Asa-Awuku, Akua |
description | In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake
behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility. |
doi_str_mv | 10.5194/acp-22-12769-2022 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720371315</galeid><doaj_id>oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170</doaj_id><sourcerecordid>A720371315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</originalsourceid><addsrcrecordid>eNptkk1P3DAQhqOqlaDQH8AtUk8cAv5KHB8RKmUlJKTC3ZrYk-BVNg62V7D_HoetoCtVPng-nnnlkd-iOKPkoqZKXIKZK8YqymSjKkYY-1Ic06YlleRMfP0nPiq-x7gmhNWEiuMCbnddcLZ8gYShBBt9mJPzUwmTLaMft50bXdqVM4TkloabhrL3GcXgc7982g05MH52ZuGWMRv8PGIqc-MlPZ0W33oYI_74e58Ujze_Hq9vq7v736vrq7vKiJanqhe8NaKuEUynQEFNFJquY13NJJqco2QtASUE2EYojqoRvG4ISgM9Sn5SrPay1sNaz8FtIOy0B6ffCz4MelnBjKihIwypNdTKRrTYKmJs2wvZWUkaKknW-rnXmoN_3mJMeu23Ycqv10xSxQnhtPmkBsiibup9CmA2Lhp9JRnhknJaZ-riP1Q-FjfO-Al7l-sHA-cHA5lJ-JoG2MaoVw9_Dlm6Z03-gxiw_1icEr34QmdfaMb0uy_04gv-BgGzqwc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719300316</pqid></control><display><type>article</type><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</creator><creatorcontrib>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</creatorcontrib><description>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake
behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-22-12769-2022</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Acids ; Adsorbed water ; Adsorption ; Aerosols ; Atmospheric aerosols ; Benzene ; Cloud condensation nuclei ; Comparative analysis ; Condensation nuclei ; Droplets ; Frameworks ; Growth ; Hygroscopicity ; Isomers ; Parameters ; Phthalates ; Phthalic acid ; Polycarboxylic acids ; Solubility ; Solutes ; Terephthalic acid ; Uptake ; Water ; Water uptake</subject><ispartof>Atmospheric chemistry and physics, 2022-09, Vol.22 (19), p.12769-12787</ispartof><rights>COPYRIGHT 2022 Copernicus GmbH</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</citedby><cites>FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</cites><orcidid>0000-0002-0354-8368 ; 0000-0002-8756-8445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2719300316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2719300316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gohil, Kanishk</creatorcontrib><creatorcontrib>Mao, Chun-Ning</creatorcontrib><creatorcontrib>Rastogi, Dewansh</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tang, Mingjin</creatorcontrib><creatorcontrib>Asa-Awuku, Akua</creatorcontrib><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><title>Atmospheric chemistry and physics</title><description>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake
behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</description><subject>Acids</subject><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Benzene</subject><subject>Cloud condensation nuclei</subject><subject>Comparative analysis</subject><subject>Condensation nuclei</subject><subject>Droplets</subject><subject>Frameworks</subject><subject>Growth</subject><subject>Hygroscopicity</subject><subject>Isomers</subject><subject>Parameters</subject><subject>Phthalates</subject><subject>Phthalic acid</subject><subject>Polycarboxylic acids</subject><subject>Solubility</subject><subject>Solutes</subject><subject>Terephthalic acid</subject><subject>Uptake</subject><subject>Water</subject><subject>Water uptake</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1P3DAQhqOqlaDQH8AtUk8cAv5KHB8RKmUlJKTC3ZrYk-BVNg62V7D_HoetoCtVPng-nnnlkd-iOKPkoqZKXIKZK8YqymSjKkYY-1Ic06YlleRMfP0nPiq-x7gmhNWEiuMCbnddcLZ8gYShBBt9mJPzUwmTLaMft50bXdqVM4TkloabhrL3GcXgc7982g05MH52ZuGWMRv8PGIqc-MlPZ0W33oYI_74e58Ujze_Hq9vq7v736vrq7vKiJanqhe8NaKuEUynQEFNFJquY13NJJqco2QtASUE2EYojqoRvG4ISgM9Sn5SrPay1sNaz8FtIOy0B6ffCz4MelnBjKihIwypNdTKRrTYKmJs2wvZWUkaKknW-rnXmoN_3mJMeu23Ycqv10xSxQnhtPmkBsiibup9CmA2Lhp9JRnhknJaZ-riP1Q-FjfO-Al7l-sHA-cHA5lJ-JoG2MaoVw9_Dlm6Z03-gxiw_1icEr34QmdfaMb0uy_04gv-BgGzqwc</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Gohil, Kanishk</creator><creator>Mao, Chun-Ning</creator><creator>Rastogi, Dewansh</creator><creator>Peng, Chao</creator><creator>Tang, Mingjin</creator><creator>Asa-Awuku, Akua</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0354-8368</orcidid><orcidid>https://orcid.org/0000-0002-8756-8445</orcidid></search><sort><creationdate>20220930</creationdate><title>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</title><author>Gohil, Kanishk ; Mao, Chun-Ning ; Rastogi, Dewansh ; Peng, Chao ; Tang, Mingjin ; Asa-Awuku, Akua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Benzene</topic><topic>Cloud condensation nuclei</topic><topic>Comparative analysis</topic><topic>Condensation nuclei</topic><topic>Droplets</topic><topic>Frameworks</topic><topic>Growth</topic><topic>Hygroscopicity</topic><topic>Isomers</topic><topic>Parameters</topic><topic>Phthalates</topic><topic>Phthalic acid</topic><topic>Polycarboxylic acids</topic><topic>Solubility</topic><topic>Solutes</topic><topic>Terephthalic acid</topic><topic>Uptake</topic><topic>Water</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gohil, Kanishk</creatorcontrib><creatorcontrib>Mao, Chun-Ning</creatorcontrib><creatorcontrib>Rastogi, Dewansh</creatorcontrib><creatorcontrib>Peng, Chao</creatorcontrib><creatorcontrib>Tang, Mingjin</creatorcontrib><creatorcontrib>Asa-Awuku, Akua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohil, Kanishk</au><au>Mao, Chun-Ning</au><au>Rastogi, Dewansh</au><au>Peng, Chao</au><au>Tang, Mingjin</au><au>Asa-Awuku, Akua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2022-09-30</date><risdate>2022</risdate><volume>22</volume><issue>19</issue><spage>12769</spage><epage>12787</epage><pages>12769-12787</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>In this work, we studied the cloud condensation nuclei (CCN) activity and subsaturated droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler theory (KT) can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water-insoluble species, the supersaturated and subsaturated hygroscopicity derived from KT principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel–Halsey–Hill (FHH) adsorption theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA–IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM-based hygroscopicity parameter can successfully simulate the water uptake
behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-22-12769-2022</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0354-8368</orcidid><orcidid>https://orcid.org/0000-0002-8756-8445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2022-09, Vol.22 (19), p.12769-12787 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ab02e1dc1d7648e890cd8f47bd706170 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Acids Adsorbed water Adsorption Aerosols Atmospheric aerosols Benzene Cloud condensation nuclei Comparative analysis Condensation nuclei Droplets Frameworks Growth Hygroscopicity Isomers Parameters Phthalates Phthalic acid Polycarboxylic acids Solubility Solutes Terephthalic acid Uptake Water Water uptake |
title | Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20water%20adsorption%20and%20solubility%20partitioning%20for%20aerosol%20hygroscopicity%20and%20droplet%20growth&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Gohil,%20Kanishk&rft.date=2022-09-30&rft.volume=22&rft.issue=19&rft.spage=12769&rft.epage=12787&rft.pages=12769-12787&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-22-12769-2022&rft_dat=%3Cgale_doaj_%3EA720371315%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-f438c455eacb9a9a509ecbb2b527ec9a5e7280a944ad6493e9643560e7cafe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719300316&rft_id=info:pmid/&rft_galeid=A720371315&rfr_iscdi=true |