Loading…
Versatile selective evolutionary pressure using synthetic defect in universal metabolism
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isola...
Saved in:
Published in: | Nature communications 2021-11, Vol.12 (1), p.6859-15, Article 6859 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 6859 |
container_title | Nature communications |
container_volume | 12 |
creator | Sellés Vidal, Lara Murray, James W. Heap, John T. |
description | The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design
de novo
. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of
Escherichia coli
genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P)
+
can substitute for defective NAD
+
regeneration, representing a very broadly-applicable artificial selection. |
doi_str_mv | 10.1038/s41467-021-27266-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0</doaj_id><sourcerecordid>2602346375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</originalsourceid><addsrcrecordid>eNp9kUtrVTEUhYMottT-AQcScHw0r5PHRJDio1BwouIs5Cb73OZybnJNci703zf21NpOzCQhe-1vr81C6DUl7yjh-n0VVEg1EEYHppiUg3mGThkRdKCK8eeP3ifovNYd6YcbqoV4iU640EwwzU7Rr59QqmtxBlxhBt_iETAc87y0mJMrN_hQoNalAF5qTFtcb1K7hhY9DjB1PY4JL6l3dcyM99DcJs-x7l-hF5ObK5zf32fox-dP3y--DlffvlxefLwa_ChIGyY1BgKSKWIMSBO6SU2d1nxijAQehCQMjPNceCIVUEXH4AlQotzEA_f8DF2u3JDdzh5K3HfTNrto7z5y2VpXut0ZrNswaiZHOUgiJhV0MJ059icxzjjSWR9W1mHZ7CF4SK24-Qn0aSXFa7vNR6sllYbpDnh7Dyj59wK12V1eSur7W9YX4UJyNXYVW1W-5FoLTA8TKLF_wrVruLaHa-_CtaY3vXns7aHlb5RdwFdB7aW0hfJv9n-wt9h9sP4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602346375</pqid></control><display><type>article</type><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><source>PubMed Central Free</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</creator><creatorcontrib>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</creatorcontrib><description>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design
de novo
. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of
Escherichia coli
genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P)
+
can substitute for defective NAD
+
regeneration, representing a very broadly-applicable artificial selection.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-27266-9</identifier><identifier>PMID: 34824282</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 38/23 ; 38/70 ; 38/77 ; 42/44 ; 42/47 ; 631/45/603 ; 631/553/1886 ; 631/553/338/469 ; 631/553/338/552 ; 631/61/318 ; 82/80 ; 82/83 ; Adenine ; Alcohol dehydrogenase ; Anaerobic conditions ; Cell growth ; Cofactors ; Design ; Directed Molecular Evolution - methods ; E coli ; Enzymes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Humanities and Social Sciences ; Imines - metabolism ; Inactivation ; Industrial applications ; Metabolic Engineering - methods ; Metabolic networks ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Mimicry ; multidisciplinary ; Mutation ; NAD - chemistry ; NAD - metabolism ; NADP ; NADP - chemistry ; NADP - metabolism ; NADPH-diaphorase ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nitroreductase ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Reductases ; Regeneration ; Science ; Science (multidisciplinary) ; Selectivity ; Substitutes ; Substrates ; Synthetic Biology</subject><ispartof>Nature communications, 2021-11, Vol.12 (1), p.6859-15, Article 6859</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</citedby><cites>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</cites><orcidid>0000-0003-2537-6824 ; 0000-0001-9991-5160 ; 0000-0002-8897-0161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602346375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602346375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34824282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellés Vidal, Lara</creatorcontrib><creatorcontrib>Murray, James W.</creatorcontrib><creatorcontrib>Heap, John T.</creatorcontrib><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design
de novo
. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of
Escherichia coli
genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P)
+
can substitute for defective NAD
+
regeneration, representing a very broadly-applicable artificial selection.</description><subject>140/131</subject><subject>38/23</subject><subject>38/70</subject><subject>38/77</subject><subject>42/44</subject><subject>42/47</subject><subject>631/45/603</subject><subject>631/553/1886</subject><subject>631/553/338/469</subject><subject>631/553/338/552</subject><subject>631/61/318</subject><subject>82/80</subject><subject>82/83</subject><subject>Adenine</subject><subject>Alcohol dehydrogenase</subject><subject>Anaerobic conditions</subject><subject>Cell growth</subject><subject>Cofactors</subject><subject>Design</subject><subject>Directed Molecular Evolution - methods</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Imines - metabolism</subject><subject>Inactivation</subject><subject>Industrial applications</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>NADP</subject><subject>NADP - chemistry</subject><subject>NADP - metabolism</subject><subject>NADPH-diaphorase</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nitroreductase</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Reductases</subject><subject>Regeneration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Substitutes</subject><subject>Substrates</subject><subject>Synthetic Biology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtrVTEUhYMottT-AQcScHw0r5PHRJDio1BwouIs5Cb73OZybnJNci703zf21NpOzCQhe-1vr81C6DUl7yjh-n0VVEg1EEYHppiUg3mGThkRdKCK8eeP3ifovNYd6YcbqoV4iU640EwwzU7Rr59QqmtxBlxhBt_iETAc87y0mJMrN_hQoNalAF5qTFtcb1K7hhY9DjB1PY4JL6l3dcyM99DcJs-x7l-hF5ObK5zf32fox-dP3y--DlffvlxefLwa_ChIGyY1BgKSKWIMSBO6SU2d1nxijAQehCQMjPNceCIVUEXH4AlQotzEA_f8DF2u3JDdzh5K3HfTNrto7z5y2VpXut0ZrNswaiZHOUgiJhV0MJ059icxzjjSWR9W1mHZ7CF4SK24-Qn0aSXFa7vNR6sllYbpDnh7Dyj59wK12V1eSur7W9YX4UJyNXYVW1W-5FoLTA8TKLF_wrVruLaHa-_CtaY3vXns7aHlb5RdwFdB7aW0hfJv9n-wt9h9sP4</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Sellés Vidal, Lara</creator><creator>Murray, James W.</creator><creator>Heap, John T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2537-6824</orcidid><orcidid>https://orcid.org/0000-0001-9991-5160</orcidid><orcidid>https://orcid.org/0000-0002-8897-0161</orcidid></search><sort><creationdate>20211125</creationdate><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><author>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/131</topic><topic>38/23</topic><topic>38/70</topic><topic>38/77</topic><topic>42/44</topic><topic>42/47</topic><topic>631/45/603</topic><topic>631/553/1886</topic><topic>631/553/338/469</topic><topic>631/553/338/552</topic><topic>631/61/318</topic><topic>82/80</topic><topic>82/83</topic><topic>Adenine</topic><topic>Alcohol dehydrogenase</topic><topic>Anaerobic conditions</topic><topic>Cell growth</topic><topic>Cofactors</topic><topic>Design</topic><topic>Directed Molecular Evolution - methods</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Imines - metabolism</topic><topic>Inactivation</topic><topic>Industrial applications</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>NADP</topic><topic>NADP - chemistry</topic><topic>NADP - metabolism</topic><topic>NADPH-diaphorase</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nitroreductase</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Reductases</topic><topic>Regeneration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Substitutes</topic><topic>Substrates</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellés Vidal, Lara</creatorcontrib><creatorcontrib>Murray, James W.</creatorcontrib><creatorcontrib>Heap, John T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellés Vidal, Lara</au><au>Murray, James W.</au><au>Heap, John T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>6859</spage><epage>15</epage><pages>6859-15</pages><artnum>6859</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design
de novo
. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of
Escherichia coli
genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P)
+
can substitute for defective NAD
+
regeneration, representing a very broadly-applicable artificial selection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34824282</pmid><doi>10.1038/s41467-021-27266-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2537-6824</orcidid><orcidid>https://orcid.org/0000-0001-9991-5160</orcidid><orcidid>https://orcid.org/0000-0002-8897-0161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-11, Vol.12 (1), p.6859-15, Article 6859 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0 |
source | PubMed Central Free; Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/131 38/23 38/70 38/77 42/44 42/47 631/45/603 631/553/1886 631/553/338/469 631/553/338/552 631/61/318 82/80 82/83 Adenine Alcohol dehydrogenase Anaerobic conditions Cell growth Cofactors Design Directed Molecular Evolution - methods E coli Enzymes Escherichia coli - genetics Escherichia coli - metabolism Humanities and Social Sciences Imines - metabolism Inactivation Industrial applications Metabolic Engineering - methods Metabolic networks Metabolic Networks and Pathways Metabolic pathways Metabolism Mimicry multidisciplinary Mutation NAD - chemistry NAD - metabolism NADP NADP - chemistry NADP - metabolism NADPH-diaphorase Nicotinamide Nicotinamide adenine dinucleotide Nitroreductase Oxidoreductases - chemistry Oxidoreductases - genetics Oxidoreductases - metabolism Reductases Regeneration Science Science (multidisciplinary) Selectivity Substitutes Substrates Synthetic Biology |
title | Versatile selective evolutionary pressure using synthetic defect in universal metabolism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20selective%20evolutionary%20pressure%20using%20synthetic%20defect%20in%20universal%20metabolism&rft.jtitle=Nature%20communications&rft.au=Sell%C3%A9s%20Vidal,%20Lara&rft.date=2021-11-25&rft.volume=12&rft.issue=1&rft.spage=6859&rft.epage=15&rft.pages=6859-15&rft.artnum=6859&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-27266-9&rft_dat=%3Cproquest_doaj_%3E2602346375%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602346375&rft_id=info:pmid/34824282&rfr_iscdi=true |