Loading…

Versatile selective evolutionary pressure using synthetic defect in universal metabolism

The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isola...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-11, Vol.12 (1), p.6859-15, Article 6859
Main Authors: Sellés Vidal, Lara, Murray, James W., Heap, John T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3
cites cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3
container_end_page 15
container_issue 1
container_start_page 6859
container_title Nature communications
container_volume 12
creator Sellés Vidal, Lara
Murray, James W.
Heap, John T.
description The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design. Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P) + can substitute for defective NAD + regeneration, representing a very broadly-applicable artificial selection.
doi_str_mv 10.1038/s41467-021-27266-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0</doaj_id><sourcerecordid>2602346375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</originalsourceid><addsrcrecordid>eNp9kUtrVTEUhYMottT-AQcScHw0r5PHRJDio1BwouIs5Cb73OZybnJNci703zf21NpOzCQhe-1vr81C6DUl7yjh-n0VVEg1EEYHppiUg3mGThkRdKCK8eeP3ifovNYd6YcbqoV4iU640EwwzU7Rr59QqmtxBlxhBt_iETAc87y0mJMrN_hQoNalAF5qTFtcb1K7hhY9DjB1PY4JL6l3dcyM99DcJs-x7l-hF5ObK5zf32fox-dP3y--DlffvlxefLwa_ChIGyY1BgKSKWIMSBO6SU2d1nxijAQehCQMjPNceCIVUEXH4AlQotzEA_f8DF2u3JDdzh5K3HfTNrto7z5y2VpXut0ZrNswaiZHOUgiJhV0MJ059icxzjjSWR9W1mHZ7CF4SK24-Qn0aSXFa7vNR6sllYbpDnh7Dyj59wK12V1eSur7W9YX4UJyNXYVW1W-5FoLTA8TKLF_wrVruLaHa-_CtaY3vXns7aHlb5RdwFdB7aW0hfJv9n-wt9h9sP4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602346375</pqid></control><display><type>article</type><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><source>PubMed Central Free</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</creator><creatorcontrib>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</creatorcontrib><description>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design. Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P) + can substitute for defective NAD + regeneration, representing a very broadly-applicable artificial selection.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-27266-9</identifier><identifier>PMID: 34824282</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 38/23 ; 38/70 ; 38/77 ; 42/44 ; 42/47 ; 631/45/603 ; 631/553/1886 ; 631/553/338/469 ; 631/553/338/552 ; 631/61/318 ; 82/80 ; 82/83 ; Adenine ; Alcohol dehydrogenase ; Anaerobic conditions ; Cell growth ; Cofactors ; Design ; Directed Molecular Evolution - methods ; E coli ; Enzymes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Humanities and Social Sciences ; Imines - metabolism ; Inactivation ; Industrial applications ; Metabolic Engineering - methods ; Metabolic networks ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Mimicry ; multidisciplinary ; Mutation ; NAD - chemistry ; NAD - metabolism ; NADP ; NADP - chemistry ; NADP - metabolism ; NADPH-diaphorase ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nitroreductase ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Reductases ; Regeneration ; Science ; Science (multidisciplinary) ; Selectivity ; Substitutes ; Substrates ; Synthetic Biology</subject><ispartof>Nature communications, 2021-11, Vol.12 (1), p.6859-15, Article 6859</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</citedby><cites>FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</cites><orcidid>0000-0003-2537-6824 ; 0000-0001-9991-5160 ; 0000-0002-8897-0161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602346375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602346375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34824282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellés Vidal, Lara</creatorcontrib><creatorcontrib>Murray, James W.</creatorcontrib><creatorcontrib>Heap, John T.</creatorcontrib><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design. Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P) + can substitute for defective NAD + regeneration, representing a very broadly-applicable artificial selection.</description><subject>140/131</subject><subject>38/23</subject><subject>38/70</subject><subject>38/77</subject><subject>42/44</subject><subject>42/47</subject><subject>631/45/603</subject><subject>631/553/1886</subject><subject>631/553/338/469</subject><subject>631/553/338/552</subject><subject>631/61/318</subject><subject>82/80</subject><subject>82/83</subject><subject>Adenine</subject><subject>Alcohol dehydrogenase</subject><subject>Anaerobic conditions</subject><subject>Cell growth</subject><subject>Cofactors</subject><subject>Design</subject><subject>Directed Molecular Evolution - methods</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Imines - metabolism</subject><subject>Inactivation</subject><subject>Industrial applications</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>NADP</subject><subject>NADP - chemistry</subject><subject>NADP - metabolism</subject><subject>NADPH-diaphorase</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nitroreductase</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Reductases</subject><subject>Regeneration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Substitutes</subject><subject>Substrates</subject><subject>Synthetic Biology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtrVTEUhYMottT-AQcScHw0r5PHRJDio1BwouIs5Cb73OZybnJNci703zf21NpOzCQhe-1vr81C6DUl7yjh-n0VVEg1EEYHppiUg3mGThkRdKCK8eeP3ifovNYd6YcbqoV4iU640EwwzU7Rr59QqmtxBlxhBt_iETAc87y0mJMrN_hQoNalAF5qTFtcb1K7hhY9DjB1PY4JL6l3dcyM99DcJs-x7l-hF5ObK5zf32fox-dP3y--DlffvlxefLwa_ChIGyY1BgKSKWIMSBO6SU2d1nxijAQehCQMjPNceCIVUEXH4AlQotzEA_f8DF2u3JDdzh5K3HfTNrto7z5y2VpXut0ZrNswaiZHOUgiJhV0MJ059icxzjjSWR9W1mHZ7CF4SK24-Qn0aSXFa7vNR6sllYbpDnh7Dyj59wK12V1eSur7W9YX4UJyNXYVW1W-5FoLTA8TKLF_wrVruLaHa-_CtaY3vXns7aHlb5RdwFdB7aW0hfJv9n-wt9h9sP4</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Sellés Vidal, Lara</creator><creator>Murray, James W.</creator><creator>Heap, John T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2537-6824</orcidid><orcidid>https://orcid.org/0000-0001-9991-5160</orcidid><orcidid>https://orcid.org/0000-0002-8897-0161</orcidid></search><sort><creationdate>20211125</creationdate><title>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</title><author>Sellés Vidal, Lara ; Murray, James W. ; Heap, John T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/131</topic><topic>38/23</topic><topic>38/70</topic><topic>38/77</topic><topic>42/44</topic><topic>42/47</topic><topic>631/45/603</topic><topic>631/553/1886</topic><topic>631/553/338/469</topic><topic>631/553/338/552</topic><topic>631/61/318</topic><topic>82/80</topic><topic>82/83</topic><topic>Adenine</topic><topic>Alcohol dehydrogenase</topic><topic>Anaerobic conditions</topic><topic>Cell growth</topic><topic>Cofactors</topic><topic>Design</topic><topic>Directed Molecular Evolution - methods</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Imines - metabolism</topic><topic>Inactivation</topic><topic>Industrial applications</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>NADP</topic><topic>NADP - chemistry</topic><topic>NADP - metabolism</topic><topic>NADPH-diaphorase</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nitroreductase</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Reductases</topic><topic>Regeneration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Substitutes</topic><topic>Substrates</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellés Vidal, Lara</creatorcontrib><creatorcontrib>Murray, James W.</creatorcontrib><creatorcontrib>Heap, John T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellés Vidal, Lara</au><au>Murray, James W.</au><au>Heap, John T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile selective evolutionary pressure using synthetic defect in universal metabolism</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>6859</spage><epage>15</epage><pages>6859-15</pages><artnum>6859</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo . Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design. Rational design of enzymes with new or improved properties is rarely straightforward, and artificial selection pressure approaches that link an improvement in the target to cell growth are an alternative. Here, the authors show that diverse enzymes sharing the ubiquitous cofactor NAD(P) + can substitute for defective NAD + regeneration, representing a very broadly-applicable artificial selection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34824282</pmid><doi>10.1038/s41467-021-27266-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2537-6824</orcidid><orcidid>https://orcid.org/0000-0001-9991-5160</orcidid><orcidid>https://orcid.org/0000-0002-8897-0161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-11, Vol.12 (1), p.6859-15, Article 6859
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ab219fa13e604f7d8d906754f709a9a0
source PubMed Central Free; Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
38/23
38/70
38/77
42/44
42/47
631/45/603
631/553/1886
631/553/338/469
631/553/338/552
631/61/318
82/80
82/83
Adenine
Alcohol dehydrogenase
Anaerobic conditions
Cell growth
Cofactors
Design
Directed Molecular Evolution - methods
E coli
Enzymes
Escherichia coli - genetics
Escherichia coli - metabolism
Humanities and Social Sciences
Imines - metabolism
Inactivation
Industrial applications
Metabolic Engineering - methods
Metabolic networks
Metabolic Networks and Pathways
Metabolic pathways
Metabolism
Mimicry
multidisciplinary
Mutation
NAD - chemistry
NAD - metabolism
NADP
NADP - chemistry
NADP - metabolism
NADPH-diaphorase
Nicotinamide
Nicotinamide adenine dinucleotide
Nitroreductase
Oxidoreductases - chemistry
Oxidoreductases - genetics
Oxidoreductases - metabolism
Reductases
Regeneration
Science
Science (multidisciplinary)
Selectivity
Substitutes
Substrates
Synthetic Biology
title Versatile selective evolutionary pressure using synthetic defect in universal metabolism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20selective%20evolutionary%20pressure%20using%20synthetic%20defect%20in%20universal%20metabolism&rft.jtitle=Nature%20communications&rft.au=Sell%C3%A9s%20Vidal,%20Lara&rft.date=2021-11-25&rft.volume=12&rft.issue=1&rft.spage=6859&rft.epage=15&rft.pages=6859-15&rft.artnum=6859&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-27266-9&rft_dat=%3Cproquest_doaj_%3E2602346375%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-f75d0e627099e69d00381a883f220d3d4602e9ac34c067e1715dc0e107af3d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602346375&rft_id=info:pmid/34824282&rfr_iscdi=true