Loading…

Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia

In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2012-04, Vol.53 (4), p.767-775
Main Authors: Orsoni, Alexina, Villard, Elise F., Bruckert, Eric, Robillard, Paul, Carrie, Alain, Bonnefont-Rousselot, Dominique, Chapman, M. John, Dallinga-Thie, Geesje M., Le Goff, Wilfried, Guerin, Maryse
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (−53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (−15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (−71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (−21%; P < 0.0001) and in the ABCG1-dependent pathway (−15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M024141