Loading…

Electrospun Polymeric Nanofibers for Malaria Control: Advances in Slow‐Release Mosquito Repellent Technology

The textile industry comprises technologies that transform synthetic or natural fibers into yarn, cloth, and felt for manufacturing clothing, upholstery, and household linens. The major public health threat in tropical and subtropical countries is mosquito‐borne malaria. Nowadays, the demand for ins...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular materials and engineering 2024-08, Vol.309 (8), p.n/a
Main Authors: Mapossa, António Benjamim, da Silva Júnior, Afonso Henrique, Mhike, Washington, Sundararaj, Uttandaraman, Silva de Oliveira, Carlos Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The textile industry comprises technologies that transform synthetic or natural fibers into yarn, cloth, and felt for manufacturing clothing, upholstery, and household linens. The major public health threat in tropical and subtropical countries is mosquito‐borne malaria. Nowadays, the demand for insect repellent‐based textiles is continuously rising, as they are used for protection against diseases transmitted by mosquitoes. The present work reviews studies on the fabrication of insect repellent containing electrospun polymeric nanofibers as principal tools for protecting people against mosquito bites. Electrospinning technology is a remarkably facile technique for fabricating polymeric nanofiber devices. The technique is outlined and elucidated. The performance of insect repellent‐based polymeric nanofibers against mosquitoes is carefully reported and comprehensively reviewed in‐depth. Furthermore, the progress made on the mathematical modeling of the release rate of repellents through polymeric nanofiber devices is reviewed. The reviewed studies demonstrate that repellents can be released slowly from electrospun nanofibers, increasing the product's protection period against insects. The reviewed works suggest that electrospinning technology has led to an effective and facile methodology for fabricating functional nanofiber textiles with insect repellent. The reviewed studies showed that product‐based repellents can be effective not only against malaria but also against other mosquito‐borne diseases. Recent developments in mosquito‐repellent textiles fabricated using the electrospinning method are reviewed. Electrospinning technology is shown to be a remarkably facile method to fabricate polymeric nanofiber‐based repellents. Electrospun polymeric nanofibers delay the release rate of the repellent. Nanofibers are shown to be effective against mosquito bites for months.
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.202400130