Loading…

Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric measurement techniques 2012-06, Vol.5 (6), p.1271-1299
Main Authors: Yoon, J., von Hoyningen-Huene, W., Kokhanovsky, A. A., Vountas, M., Burrows, J. P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03
cites cdi_FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03
container_end_page 1299
container_issue 6
container_start_page 1271
container_title Atmospheric measurement techniques
container_volume 5
creator Yoon, J.
von Hoyningen-Huene, W.
Kokhanovsky, A. A.
Vountas, M.
Burrows, J. P.
description Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr−1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr−1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr−1 at Avignon and −2.29% yr−1 at Ispra) and North America (−0.52% yr−1 for GSFC and −0.01% yr−1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr−1 at Solar_Village and −1.18% yr−1 at Ouagadougou) are observed depending on meteorological conditions.
doi_str_mv 10.5194/amt-5-1271-2012
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab5b31383b69430b96e3757f77d633fc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab5b31383b69430b96e3757f77d633fc</doaj_id><sourcerecordid>oai_doaj_org_article_ab5b31383b69430b96e3757f77d633fc</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhYMoWKvX3uYF1iabbDa5LKVqoViQeh3yW7fubkqyFPsAvpIv0BczVRGvZjicOcPMB8AtRncVFnSiuqGoClzWuCgRLs_ACHNWF7yi_PxffwmuUtoixCiuyxE4rKPrLVS9ag-pSTB4qFwMKbQw7IbGqBYOr415611K2WXh8aPfpCEePzvo3nehd_0ArYvN3lnoY-iy3cFNG3SenM6fV0_zNUw7Z4aYhaCTi3s1NKFP1-DCqza5m986Bi_38_XssViuHhaz6bIwhNKhwKxmqrJaaM4I5rQUXigq6tp6VglDGfGEIVRqw7nA1BFkLLel99Zyhg0iY7D4ybVBbeUuNp2KBxlUI7-FEDdSxXxp66TSlSaYcKKZoARpwRypq9rnZYwQb3LW5CfL5Bel6PxfHkbyREFmCrKSJwryRIF8AYnifdE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><creator>Yoon, J. ; von Hoyningen-Huene, W. ; Kokhanovsky, A. A. ; Vountas, M. ; Burrows, J. P.</creator><creatorcontrib>Yoon, J. ; von Hoyningen-Huene, W. ; Kokhanovsky, A. A. ; Vountas, M. ; Burrows, J. P.</creatorcontrib><description>Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr−1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr−1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr−1 at Avignon and −2.29% yr−1 at Ispra) and North America (−0.52% yr−1 for GSFC and −0.01% yr−1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr−1 at Solar_Village and −1.18% yr−1 at Ouagadougou) are observed depending on meteorological conditions.</description><identifier>ISSN: 1867-8548</identifier><identifier>ISSN: 1867-1381</identifier><identifier>EISSN: 1867-8548</identifier><identifier>DOI: 10.5194/amt-5-1271-2012</identifier><language>eng</language><publisher>Copernicus Publications</publisher><ispartof>Atmospheric measurement techniques, 2012-06, Vol.5 (6), p.1271-1299</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03</citedby><cites>FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Yoon, J.</creatorcontrib><creatorcontrib>von Hoyningen-Huene, W.</creatorcontrib><creatorcontrib>Kokhanovsky, A. A.</creatorcontrib><creatorcontrib>Vountas, M.</creatorcontrib><creatorcontrib>Burrows, J. P.</creatorcontrib><title>Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations</title><title>Atmospheric measurement techniques</title><description>Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr−1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr−1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr−1 at Avignon and −2.29% yr−1 at Ispra) and North America (−0.52% yr−1 for GSFC and −0.01% yr−1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr−1 at Solar_Village and −1.18% yr−1 at Ouagadougou) are observed depending on meteorological conditions.</description><issn>1867-8548</issn><issn>1867-1381</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkd1KAzEQhYMoWKvX3uYF1iabbDa5LKVqoViQeh3yW7fubkqyFPsAvpIv0BczVRGvZjicOcPMB8AtRncVFnSiuqGoClzWuCgRLs_ACHNWF7yi_PxffwmuUtoixCiuyxE4rKPrLVS9ag-pSTB4qFwMKbQw7IbGqBYOr415611K2WXh8aPfpCEePzvo3nehd_0ArYvN3lnoY-iy3cFNG3SenM6fV0_zNUw7Z4aYhaCTi3s1NKFP1-DCqza5m986Bi_38_XssViuHhaz6bIwhNKhwKxmqrJaaM4I5rQUXigq6tp6VglDGfGEIVRqw7nA1BFkLLel99Zyhg0iY7D4ybVBbeUuNp2KBxlUI7-FEDdSxXxp66TSlSaYcKKZoARpwRypq9rnZYwQb3LW5CfL5Bel6PxfHkbyREFmCrKSJwryRIF8AYnifdE</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Yoon, J.</creator><creator>von Hoyningen-Huene, W.</creator><creator>Kokhanovsky, A. A.</creator><creator>Vountas, M.</creator><creator>Burrows, J. P.</creator><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20120606</creationdate><title>Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations</title><author>Yoon, J. ; von Hoyningen-Huene, W. ; Kokhanovsky, A. A. ; Vountas, M. ; Burrows, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, J.</creatorcontrib><creatorcontrib>von Hoyningen-Huene, W.</creatorcontrib><creatorcontrib>Kokhanovsky, A. A.</creatorcontrib><creatorcontrib>Vountas, M.</creatorcontrib><creatorcontrib>Burrows, J. P.</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, J.</au><au>von Hoyningen-Huene, W.</au><au>Kokhanovsky, A. A.</au><au>Vountas, M.</au><au>Burrows, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations</atitle><jtitle>Atmospheric measurement techniques</jtitle><date>2012-06-06</date><risdate>2012</risdate><volume>5</volume><issue>6</issue><spage>1271</spage><epage>1299</epage><pages>1271-1299</pages><issn>1867-8548</issn><issn>1867-1381</issn><eissn>1867-8548</eissn><abstract>Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr−1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr−1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr−1 at Avignon and −2.29% yr−1 at Ispra) and North America (−0.52% yr−1 for GSFC and −0.01% yr−1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr−1 at Solar_Village and −1.18% yr−1 at Ouagadougou) are observed depending on meteorological conditions.</abstract><pub>Copernicus Publications</pub><doi>10.5194/amt-5-1271-2012</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-8548
ispartof Atmospheric measurement techniques, 2012-06, Vol.5 (6), p.1271-1299
issn 1867-8548
1867-1381
1867-8548
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ab5b31383b69430b96e3757f77d633fc
source Publicly Available Content Database; Directory of Open Access Journals
title Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trend%20analysis%20of%20aerosol%20optical%20thickness%20and%20%C3%85ngstr%C3%B6m%20exponent%20derived%20from%20the%20global%20AERONET%20spectral%20observations&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Yoon,%20J.&rft.date=2012-06-06&rft.volume=5&rft.issue=6&rft.spage=1271&rft.epage=1299&rft.pages=1271-1299&rft.issn=1867-8548&rft.eissn=1867-8548&rft_id=info:doi/10.5194/amt-5-1271-2012&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ab5b31383b69430b96e3757f77d633fc%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-1676a5db9b86318429f9a4977df659c463f36002bc88914e30cd8d2ffdd861c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true