Loading…

An Ultra-Wideband Indoor Localization Algorithm with Improved Cubature Kalman Filtering Based on Sigmoid Function

In this paper, an improved cubature Kalman filtering (CKF) is proposed using the Sigmoid function to address the problems of positioning accuracy degradation and large deviations in ultra-wideband (UWB) indoor positioning in non-line-of-sight environments. The improved CKF is based on the squared ra...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-03, Vol.14 (6), p.2239
Main Authors: Lv, Yunzhu, Liu, Songlin, Gao, Yipin, Dai, Jun, Ren, Zongbin, Liu, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an improved cubature Kalman filtering (CKF) is proposed using the Sigmoid function to address the problems of positioning accuracy degradation and large deviations in ultra-wideband (UWB) indoor positioning in non-line-of-sight environments. The improved CKF is based on the squared range difference (SRD) model of the time difference of arrival (TDOA) algorithm. The inaccurate impact of model estimation under non-Gaussian noise is reduced by updating the measurement noise matrix in real time. The covariance matrix is estimated using singular value decomposition (SVD) to solve the problem of degraded state estimation performance. The filtering effect of the improved CKF algorithm is evaluated by referring to the checkpoints in the dynamic trajectory. The experimental results show that the proposed algorithm effectively mitigates the impact of UWB ranging outliers in the occluded experimental environment, which makes the dynamic positioning trajectory smoother, better fitted, and more stable. The algorithm improves the positioning accuracy by up to 39.29% compared with the SRD model used alone.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14062239