Loading…

Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting

Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and fi...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2020-12, Vol.10 (12), p.420
Main Authors: Huang, Chunyan, Liu, Hongju, Meng, Shujuan, Liang, Dawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553
cites cdi_FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553
container_end_page
container_issue 12
container_start_page 420
container_title Membranes (Basel)
container_volume 10
creator Huang, Chunyan
Liu, Hongju
Meng, Shujuan
Liang, Dawei
description Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and filter cake layer characterization to make an overall performance assessment of DMBR. The results showed that DMBR has a good removal effect on organic matter removal, and with a chemical oxygen demand removal rate over 85%. Protein was found to be the main membrane fouling substance. Due to the electric double-layer effect, membrane fouling tended to be alleviated when the PN/PS value was low. Using a filtration model under constant current conditions, the filtration process through the cake layer was observed to be consistent with cake-intermediate model.
doi_str_mv 10.3390/membranes10120420
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ab7c9ec73cff450b81c5bb4080315212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab7c9ec73cff450b81c5bb4080315212</doaj_id><sourcerecordid>2470900186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553</originalsourceid><addsrcrecordid>eNplks9uEzEQxlcIRKvQB-CCLHHhEhj_W-9ekJLQQqVE9ABny-udTRztrlN7t2regkfGadKqBV9szXzz8_jzZNl7Cp85L-FLh10VTI-RAmUgGLzKzhkoNQWu5Otn57PsIsYtpJWDzDm8zc4450zlVJ1nfy6bBu1AfENuZgviezJskMxxY-6cD4fwt31vOmfJ6nQfmacEGjuk9JVrh2AGl8qWZo-BzE3E-pEy6027jy4eKCt3nxJLdzu6mtwEv8MwOIzE9DVZ-RrbxBoG16_fZW8a00a8OO2T7PfV5a_Fj-ny5_frxWw5taLkw1RYazlKZbmpwCAWjCZTSmxA1nnB6jy3QligVYFVIYUSOdaAhrGmrFkjJZ9k10du7c1W74LrTNhrb5x-CPiw1ia1aFvUplK2RKu4bRohoSqolVUloABOJaMssb4eWbux6rC22CdX2hfQl5nebfTa32mlckkFT4BPJ0DwtyPGQXcuWmzb5Lcfo2ZCQQlAizxJP_4j3foxJKcfVJTR8vDJk4weVTb4GAM2T81Q0Ifx0f-NT6r58PwVTxWPw8L_ArmGw2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471219056</pqid></control><display><type>article</type><title>Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Huang, Chunyan ; Liu, Hongju ; Meng, Shujuan ; Liang, Dawei</creator><creatorcontrib>Huang, Chunyan ; Liu, Hongju ; Meng, Shujuan ; Liang, Dawei</creatorcontrib><description>Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and filter cake layer characterization to make an overall performance assessment of DMBR. The results showed that DMBR has a good removal effect on organic matter removal, and with a chemical oxygen demand removal rate over 85%. Protein was found to be the main membrane fouling substance. Due to the electric double-layer effect, membrane fouling tended to be alleviated when the PN/PS value was low. Using a filtration model under constant current conditions, the filtration process through the cake layer was observed to be consistent with cake-intermediate model.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes10120420</identifier><identifier>PMID: 33327617</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activated carbon ; Biomass ; Bioreactors ; Chemical oxygen demand ; DMBR ; Experiments ; Filter cake ; Filtration ; Fouling ; membrane fouling ; Membrane processes ; Membranes ; Microorganisms ; Molecular weight ; Organic matter ; Performance assessment ; Permeability ; PN/PS in EPS ; Pore size ; Proteins ; Sludge ; the combined model</subject><ispartof>Membranes (Basel), 2020-12, Vol.10 (12), p.420</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553</citedby><cites>FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553</cites><orcidid>0000-0002-1396-8497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471219056/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471219056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33327617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chunyan</creatorcontrib><creatorcontrib>Liu, Hongju</creatorcontrib><creatorcontrib>Meng, Shujuan</creatorcontrib><creatorcontrib>Liang, Dawei</creatorcontrib><title>Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting</title><title>Membranes (Basel)</title><addtitle>Membranes (Basel)</addtitle><description>Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and filter cake layer characterization to make an overall performance assessment of DMBR. The results showed that DMBR has a good removal effect on organic matter removal, and with a chemical oxygen demand removal rate over 85%. Protein was found to be the main membrane fouling substance. Due to the electric double-layer effect, membrane fouling tended to be alleviated when the PN/PS value was low. Using a filtration model under constant current conditions, the filtration process through the cake layer was observed to be consistent with cake-intermediate model.</description><subject>Activated carbon</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Chemical oxygen demand</subject><subject>DMBR</subject><subject>Experiments</subject><subject>Filter cake</subject><subject>Filtration</subject><subject>Fouling</subject><subject>membrane fouling</subject><subject>Membrane processes</subject><subject>Membranes</subject><subject>Microorganisms</subject><subject>Molecular weight</subject><subject>Organic matter</subject><subject>Performance assessment</subject><subject>Permeability</subject><subject>PN/PS in EPS</subject><subject>Pore size</subject><subject>Proteins</subject><subject>Sludge</subject><subject>the combined model</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplks9uEzEQxlcIRKvQB-CCLHHhEhj_W-9ekJLQQqVE9ABny-udTRztrlN7t2regkfGadKqBV9szXzz8_jzZNl7Cp85L-FLh10VTI-RAmUgGLzKzhkoNQWu5Otn57PsIsYtpJWDzDm8zc4450zlVJ1nfy6bBu1AfENuZgviezJskMxxY-6cD4fwt31vOmfJ6nQfmacEGjuk9JVrh2AGl8qWZo-BzE3E-pEy6027jy4eKCt3nxJLdzu6mtwEv8MwOIzE9DVZ-RrbxBoG16_fZW8a00a8OO2T7PfV5a_Fj-ny5_frxWw5taLkw1RYazlKZbmpwCAWjCZTSmxA1nnB6jy3QligVYFVIYUSOdaAhrGmrFkjJZ9k10du7c1W74LrTNhrb5x-CPiw1ia1aFvUplK2RKu4bRohoSqolVUloABOJaMssb4eWbux6rC22CdX2hfQl5nebfTa32mlckkFT4BPJ0DwtyPGQXcuWmzb5Lcfo2ZCQQlAizxJP_4j3foxJKcfVJTR8vDJk4weVTb4GAM2T81Q0Ifx0f-NT6r58PwVTxWPw8L_ArmGw2c</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Huang, Chunyan</creator><creator>Liu, Hongju</creator><creator>Meng, Shujuan</creator><creator>Liang, Dawei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1396-8497</orcidid></search><sort><creationdate>20201214</creationdate><title>Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting</title><author>Huang, Chunyan ; Liu, Hongju ; Meng, Shujuan ; Liang, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Chemical oxygen demand</topic><topic>DMBR</topic><topic>Experiments</topic><topic>Filter cake</topic><topic>Filtration</topic><topic>Fouling</topic><topic>membrane fouling</topic><topic>Membrane processes</topic><topic>Membranes</topic><topic>Microorganisms</topic><topic>Molecular weight</topic><topic>Organic matter</topic><topic>Performance assessment</topic><topic>Permeability</topic><topic>PN/PS in EPS</topic><topic>Pore size</topic><topic>Proteins</topic><topic>Sludge</topic><topic>the combined model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chunyan</creatorcontrib><creatorcontrib>Liu, Hongju</creatorcontrib><creatorcontrib>Meng, Shujuan</creatorcontrib><creatorcontrib>Liang, Dawei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chunyan</au><au>Liu, Hongju</au><au>Meng, Shujuan</au><au>Liang, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting</atitle><jtitle>Membranes (Basel)</jtitle><addtitle>Membranes (Basel)</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>420</spage><pages>420-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Recently, dynamic membrane bioreactor (DMBR) has gradually gained the interest of researchers for the development of membrane technology. In this paper, we set up parallel experiments to investigate the effect of powder activated carbon (PAC) on organic matter removal, transmembrane pressure, and filter cake layer characterization to make an overall performance assessment of DMBR. The results showed that DMBR has a good removal effect on organic matter removal, and with a chemical oxygen demand removal rate over 85%. Protein was found to be the main membrane fouling substance. Due to the electric double-layer effect, membrane fouling tended to be alleviated when the PN/PS value was low. Using a filtration model under constant current conditions, the filtration process through the cake layer was observed to be consistent with cake-intermediate model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33327617</pmid><doi>10.3390/membranes10120420</doi><orcidid>https://orcid.org/0000-0002-1396-8497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2020-12, Vol.10 (12), p.420
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ab7c9ec73cff450b81c5bb4080315212
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Activated carbon
Biomass
Bioreactors
Chemical oxygen demand
DMBR
Experiments
Filter cake
Filtration
Fouling
membrane fouling
Membrane processes
Membranes
Microorganisms
Molecular weight
Organic matter
Performance assessment
Permeability
PN/PS in EPS
Pore size
Proteins
Sludge
the combined model
title Effect of PAC on the Behavior of Dynamic Membrane Bioreactor Filtration Layer Based on the Analysis of Mixed Liquid Properties and Model Fitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20PAC%20on%20the%20Behavior%20of%20Dynamic%20Membrane%20Bioreactor%20Filtration%20Layer%20Based%20on%20the%20Analysis%20of%20Mixed%20Liquid%20Properties%20and%20Model%20Fitting&rft.jtitle=Membranes%20(Basel)&rft.au=Huang,%20Chunyan&rft.date=2020-12-14&rft.volume=10&rft.issue=12&rft.spage=420&rft.pages=420-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes10120420&rft_dat=%3Cproquest_doaj_%3E2470900186%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-4ccc3e57c3ab0aee8213909ef05d682d66c44c01b8eb854746ed0ea22f9d2f553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471219056&rft_id=info:pmid/33327617&rfr_iscdi=true