Loading…
The Nurr1 ligand indole acetic acid hydrazide loaded onto ZnFe2O4 nanoparticles suppresses proinflammatory gene expressions in SimA9 microglial cells
The nuclear receptor-related factor 1 (Nurr1), an orphan nuclear receptor in microglia, has been recognized as a major player in attenuating the transcription of the pro-inflammatory genes to maintain CNS homeostasis. In this study, we investigate Nurr1 trans-repression activity by targeting this re...
Saved in:
Published in: | Scientific reports 2024-06, Vol.14 (1), p.13987-11, Article 13987 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nuclear receptor-related factor 1 (Nurr1), an orphan nuclear receptor in microglia, has been recognized as a major player in attenuating the transcription of the pro-inflammatory genes to maintain CNS homeostasis. In this study, we investigate Nurr1 trans-repression activity by targeting this receptor with one of the indole derivatives 3-Indole acetic acid hydrazide (IAAH) loaded onto zinc iron oxide (ZnFe
2
O
4
) NPs coated with PEG. XRD, SEM, FTIR, UV–Vis spectroscopy, and DLS were used to characterize the synthesized IAAH-NPs. The anti-inflammatory properties of IAAH-NPs on LPS-stimulated SimA9 microglia were assayed by measuring pro-inflammatory cytokine gene expressions and protein levels using RT-PCR and ELISA, respectively. As a result, IAAH-NPs showed an ability to suppress pro-inflammatory genes, including IL-6, IL-1β, and TNF-α in LPS-stimulated SimA9 via targeting Nurr1. The current study suggests that ZnFe
2
O
4
NPs as a delivery system can increase the efficiency of cellular uptake and enhance the IAAH ability to inhibit the pro-inflammatory cytokines. Collectively, we demonstrate that IAAH-NPs is a potential modulator of Nurr1 that combines nanotechnology as a delivery system to suppress neuroinflammation in CNS which opens a window for possible ambitious neuroprotective therapeutic approaches to neuro disorders. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-64820-z |