Loading…
Prebiotic Potential and Anti-Inflammatory Activity of Soluble Polysaccharides Obtained from Soybean Residue
In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and H and C nu...
Saved in:
Published in: | Foods 2020-12, Vol.9 (12), p.1808 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and
H and
C nuclear magnetic resonance spectrum analysis. The results suggested that MESP mainly comprised arabinose, rhamnose, and glucuronic acid with (1→4) glycosidic linkages in the backbone. Compared with inulin, MESP was found to selectively stimulate the growth of
probiotics. Moreover, the results of in vitro fermentation indicated that MESP significantly increased the concentrations of both acetate and butyrate (
< 0.05). MESP were treated on lipopolysaccharide (LPS)-stimulated RAW264.7 cells to determine the anti-inflammatory effect in vitro. It was observed that MESP inhibited nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 production. Furthermore, Western blotting results indicated that MESP significantly attenuated LPS-induced downregulation of phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in macrophages. The underlying mechanism might involve inhibition of the expression of pro-inflammatory cytokines, presumably via JAK2/STAT3 pathway. Collectively, the results of our study paved way for the production of MESP, which may be potentially used as nutraceutical ingredients for prebiotics and anti-inflammatory agents, from soybean residue. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods9121808 |