Loading…
Single-Molecule FRET Detection of Sub-Nanometer Distance Changes in the Range below a 3-Nanometer Scale
Single-molecule fluorescence energy transfer (FRET) detection has become a key technique to monitor intra- and intermolecular distance changes in biological processes. As the sensitive detection range of conventional FRET pairs is limited to 3-8 nm, complement probes are necessary for extending this...
Saved in:
Published in: | Biosensors (Basel) 2020-11, Vol.10 (11), p.168 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-molecule fluorescence energy transfer (FRET) detection has become a key technique to monitor intra- and intermolecular distance changes in biological processes. As the sensitive detection range of conventional FRET pairs is limited to 3-8 nm, complement probes are necessary for extending this typical working range. Here, we realized a single-molecule FRET assay for a short distance range of below 3 nm by using a Cy2-Cy7 pair having extremely small spectral overlap. Using two DNA duplexes with a small difference in the labeling position, we demonstrated that our assay can observe subtle changes at a short distance range. High sensitivity in the range of 1-3 nm and compatibility with the conventional FRET assay make this approach useful for understanding dynamics at a short distance. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios10110168 |