Loading…
Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities
The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was foun...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-6c8d5be76d9e9fe0818862f6da4b3e655c989bd763fe2f85c0848e75b75f758a3 |
container_end_page | |
container_issue | |
container_start_page | 2031 |
container_title | |
container_volume | 108 |
creator | Kaputkina, N.E. Lozovik, Yu.E. Altaisky, M.V. |
description | The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a) increase of the magnetoexciton effective mass and (b) increase of the effective confining potential steepness for quantum dots. |
doi_str_mv | 10.1051/epjconf/201610802031 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_abfa9117c7254217b179675d14baf095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_abfa9117c7254217b179675d14baf095</doaj_id><sourcerecordid>4042807251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6c8d5be76d9e9fe0818862f6da4b3e655c989bd763fe2f85c0848e75b75f758a3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0HHgKeY_cj-3WUWrVQUVGpt2WzmdWENFt3E8F_b2pL6Vxm5vF484aXJJcYXWPE8BQ2tfWtmxKEOUYSEUTxSTIiGKEM4fzj9Gg-TyYx1mgoqhRlfJSsXje-7UwLvo_pzH9BgNZCOncObBfTqk1fetN2_Tq99cNu2vIArKBpYvrcGAvllvhY2eCt-am6CuJFcuZME2Gy7-Pk_W7-NnvIlk_3i9nNMrM0R13GrSxZAYKXCpQDJLGUnDhemrygwBmzSqqiFJw6IE4yi2QuQbBCMCeYNHScLHa6pTe13oRqbcKv9qbS_4APn9qErrINaFM4ozAWVhCWEywKLBQXrMR5YRxSbNC62mltgv_uIXa69n1oB_sai8EWp4STgZXvWMO3MQZwh6sY6W0iep-IPk6E_gHg_H-X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786263262</pqid></control><display><type>conference_proceeding</type><title>Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Kaputkina, N.E. ; Lozovik, Yu.E. ; Altaisky, M.V.</creator><creatorcontrib>Kaputkina, N.E. ; Lozovik, Yu.E. ; Altaisky, M.V.</creatorcontrib><description>The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a) increase of the magnetoexciton effective mass and (b) increase of the effective confining potential steepness for quantum dots.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201610802031</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Barrier layers ; Confining ; Field strength ; Magnetic fields ; Microcavities ; Quantum dots ; Quantum wells ; Slopes</subject><ispartof>EPJ Web of conferences, 2016, Vol.108, p.2031</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-6c8d5be76d9e9fe0818862f6da4b3e655c989bd763fe2f85c0848e75b75f758a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1786263262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Kaputkina, N.E.</creatorcontrib><creatorcontrib>Lozovik, Yu.E.</creatorcontrib><creatorcontrib>Altaisky, M.V.</creatorcontrib><title>Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities</title><title>EPJ Web of conferences</title><description>The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a) increase of the magnetoexciton effective mass and (b) increase of the effective confining potential steepness for quantum dots.</description><subject>Barrier layers</subject><subject>Confining</subject><subject>Field strength</subject><subject>Magnetic fields</subject><subject>Microcavities</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>Slopes</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0HHgKeY_cj-3WUWrVQUVGpt2WzmdWENFt3E8F_b2pL6Vxm5vF484aXJJcYXWPE8BQ2tfWtmxKEOUYSEUTxSTIiGKEM4fzj9Gg-TyYx1mgoqhRlfJSsXje-7UwLvo_pzH9BgNZCOncObBfTqk1fetN2_Tq99cNu2vIArKBpYvrcGAvllvhY2eCt-am6CuJFcuZME2Gy7-Pk_W7-NnvIlk_3i9nNMrM0R13GrSxZAYKXCpQDJLGUnDhemrygwBmzSqqiFJw6IE4yi2QuQbBCMCeYNHScLHa6pTe13oRqbcKv9qbS_4APn9qErrINaFM4ozAWVhCWEywKLBQXrMR5YRxSbNC62mltgv_uIXa69n1oB_sai8EWp4STgZXvWMO3MQZwh6sY6W0iep-IPk6E_gHg_H-X</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Kaputkina, N.E.</creator><creator>Lozovik, Yu.E.</creator><creator>Altaisky, M.V.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities</title><author>Kaputkina, N.E. ; Lozovik, Yu.E. ; Altaisky, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6c8d5be76d9e9fe0818862f6da4b3e655c989bd763fe2f85c0848e75b75f758a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Barrier layers</topic><topic>Confining</topic><topic>Field strength</topic><topic>Magnetic fields</topic><topic>Microcavities</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>Slopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaputkina, N.E.</creatorcontrib><creatorcontrib>Lozovik, Yu.E.</creatorcontrib><creatorcontrib>Altaisky, M.V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaputkina, N.E.</au><au>Lozovik, Yu.E.</au><au>Altaisky, M.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities</atitle><btitle>EPJ Web of conferences</btitle><date>2016-01-01</date><risdate>2016</risdate><volume>108</volume><spage>2031</spage><pages>2031-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a) increase of the magnetoexciton effective mass and (b) increase of the effective confining potential steepness for quantum dots.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201610802031</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of conferences, 2016, Vol.108, p.2031 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_abfa9117c7254217b179675d14baf095 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Barrier layers Confining Field strength Magnetic fields Microcavities Quantum dots Quantum wells Slopes |
title | Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spontaneous%20Coherence%20Effects%20in%20Quantum%20Dots%20and%20Quantum%20Wells%20Placed%20in%20Microcavities&rft.btitle=EPJ%20Web%20of%20conferences&rft.au=Kaputkina,%20N.E.&rft.date=2016-01-01&rft.volume=108&rft.spage=2031&rft.pages=2031-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201610802031&rft_dat=%3Cproquest_doaj_%3E4042807251%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-6c8d5be76d9e9fe0818862f6da4b3e655c989bd763fe2f85c0848e75b75f758a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786263262&rft_id=info:pmid/&rfr_iscdi=true |