Loading…
Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis
Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset mana...
Saved in:
Published in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Jin, Lan Kim, Dowon Chan, Kit Yan Abu-Siada, Ahmed |
description | Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%. |
doi_str_mv | 10.1109/ACCESS.2024.3366905 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10439187</ieee_id><doaj_id>oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395</doaj_id><sourcerecordid>2932576372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhjS_oD0IevZWsj5sHc0mTRc2JJD2LJ7tp60Wr7XV8ybk31dbhxJdJObNzGM0RfFZ8JUQ3H5r1-ubx8dVxSu1ktIYy_W74qISxpZSS_P-zftjcUW05_k0GdL1RfF0jXhkd9D_DhOyLUKawrQrOyAcWEuEcx5OsMMDTjNrj8cUM5f5mNh9GMvN4YDpTH2Iz5jYnGCiPDuD7ETZiV0Hojg-ZcotEGsnGF8o0Kfig4eR8Or1vix-fb_5uf5Rbu9vN-t2W_aK27lslJcecyLjVac63SshregE9pUAtE3HvZSCD433Q8dBodXSZoKBquvFgPKy2Cy-Q4S9O6ZwgPTiIgT3D4hp5yDNoR_RQefB11YP9QBKmgEsGO1NXlnXeavOXl8Xr_wHf05Is9vHU8qByFVWVro2sq4ySy6sPkWihP7_VsHduS-39OXOfbnXvrLqy6IKiPhGoXLcppZ_AT4YkrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576372</pqid></control><display><type>article</type><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><source>IEEE Open Access Journals</source><creator>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</creator><creatorcontrib>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</creatorcontrib><description>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3366905</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Asset management ; Condition monitoring ; Cost analysis ; Data acquisition ; Discharges (electric) ; Dissolved gas analysis ; Dissolved gases ; Fault detection ; Fault diagnosis ; Feature extraction ; Gas analysis ; Life estimation ; Machine learning ; Mineral oils ; Oil insulation ; Power transformer insulation ; Power transformers ; Real time ; Remnant life estimation ; Training ; Transformers ; Voltage transformers</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</citedby><cites>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</cites><orcidid>0000-0002-2094-3036 ; 0000-0003-4949-7647 ; 0000-0002-8206-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10439187$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jin, Lan</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Chan, Kit Yan</creatorcontrib><creatorcontrib>Abu-Siada, Ahmed</creatorcontrib><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</description><subject>Artificial neural networks</subject><subject>Asset management</subject><subject>Condition monitoring</subject><subject>Cost analysis</subject><subject>Data acquisition</subject><subject>Discharges (electric)</subject><subject>Dissolved gas analysis</subject><subject>Dissolved gases</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Gas analysis</subject><subject>Life estimation</subject><subject>Machine learning</subject><subject>Mineral oils</subject><subject>Oil insulation</subject><subject>Power transformer insulation</subject><subject>Power transformers</subject><subject>Real time</subject><subject>Remnant life estimation</subject><subject>Training</subject><subject>Transformers</subject><subject>Voltage transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhjS_oD0IevZWsj5sHc0mTRc2JJD2LJ7tp60Wr7XV8ybk31dbhxJdJObNzGM0RfFZ8JUQ3H5r1-ubx8dVxSu1ktIYy_W74qISxpZSS_P-zftjcUW05_k0GdL1RfF0jXhkd9D_DhOyLUKawrQrOyAcWEuEcx5OsMMDTjNrj8cUM5f5mNh9GMvN4YDpTH2Iz5jYnGCiPDuD7ETZiV0Hojg-ZcotEGsnGF8o0Kfig4eR8Or1vix-fb_5uf5Rbu9vN-t2W_aK27lslJcecyLjVac63SshregE9pUAtE3HvZSCD433Q8dBodXSZoKBquvFgPKy2Cy-Q4S9O6ZwgPTiIgT3D4hp5yDNoR_RQefB11YP9QBKmgEsGO1NXlnXeavOXl8Xr_wHf05Is9vHU8qByFVWVro2sq4ySy6sPkWihP7_VsHduS-39OXOfbnXvrLqy6IKiPhGoXLcppZ_AT4YkrA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Jin, Lan</creator><creator>Kim, Dowon</creator><creator>Chan, Kit Yan</creator><creator>Abu-Siada, Ahmed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2094-3036</orcidid><orcidid>https://orcid.org/0000-0003-4949-7647</orcidid><orcidid>https://orcid.org/0000-0002-8206-2189</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><author>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Asset management</topic><topic>Condition monitoring</topic><topic>Cost analysis</topic><topic>Data acquisition</topic><topic>Discharges (electric)</topic><topic>Dissolved gas analysis</topic><topic>Dissolved gases</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Gas analysis</topic><topic>Life estimation</topic><topic>Machine learning</topic><topic>Mineral oils</topic><topic>Oil insulation</topic><topic>Power transformer insulation</topic><topic>Power transformers</topic><topic>Real time</topic><topic>Remnant life estimation</topic><topic>Training</topic><topic>Transformers</topic><topic>Voltage transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Lan</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Chan, Kit Yan</creatorcontrib><creatorcontrib>Abu-Siada, Ahmed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Lan</au><au>Kim, Dowon</au><au>Chan, Kit Yan</au><au>Abu-Siada, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3366905</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2094-3036</orcidid><orcidid>https://orcid.org/0000-0003-4949-7647</orcidid><orcidid>https://orcid.org/0000-0002-8206-2189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395 |
source | IEEE Open Access Journals |
subjects | Artificial neural networks Asset management Condition monitoring Cost analysis Data acquisition Discharges (electric) Dissolved gas analysis Dissolved gases Fault detection Fault diagnosis Feature extraction Gas analysis Life estimation Machine learning Mineral oils Oil insulation Power transformer insulation Power transformers Real time Remnant life estimation Training Transformers Voltage transformers |
title | Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Machine%20Learning-based%20Asset%20Management%20Approach%20for%20Oil-Immersed%20Power%20transformers%20using%20Dissolved%20Gas%20Analysis&rft.jtitle=IEEE%20access&rft.au=Jin,%20Lan&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3366905&rft_dat=%3Cproquest_doaj_%3E2932576372%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932576372&rft_id=info:pmid/&rft_ieee_id=10439187&rfr_iscdi=true |