Loading…

Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis

Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset mana...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-01, Vol.12, p.1-1
Main Authors: Jin, Lan, Kim, Dowon, Chan, Kit Yan, Abu-Siada, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3
cites cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Jin, Lan
Kim, Dowon
Chan, Kit Yan
Abu-Siada, Ahmed
description Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.
doi_str_mv 10.1109/ACCESS.2024.3366905
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10439187</ieee_id><doaj_id>oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395</doaj_id><sourcerecordid>2932576372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhjS_oD0IevZWsj5sHc0mTRc2JJD2LJ7tp60Wr7XV8ybk31dbhxJdJObNzGM0RfFZ8JUQ3H5r1-ubx8dVxSu1ktIYy_W74qISxpZSS_P-zftjcUW05_k0GdL1RfF0jXhkd9D_DhOyLUKawrQrOyAcWEuEcx5OsMMDTjNrj8cUM5f5mNh9GMvN4YDpTH2Iz5jYnGCiPDuD7ETZiV0Hojg-ZcotEGsnGF8o0Kfig4eR8Or1vix-fb_5uf5Rbu9vN-t2W_aK27lslJcecyLjVac63SshregE9pUAtE3HvZSCD433Q8dBodXSZoKBquvFgPKy2Cy-Q4S9O6ZwgPTiIgT3D4hp5yDNoR_RQefB11YP9QBKmgEsGO1NXlnXeavOXl8Xr_wHf05Is9vHU8qByFVWVro2sq4ySy6sPkWihP7_VsHduS-39OXOfbnXvrLqy6IKiPhGoXLcppZ_AT4YkrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576372</pqid></control><display><type>article</type><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><source>IEEE Open Access Journals</source><creator>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</creator><creatorcontrib>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</creatorcontrib><description>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3366905</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Asset management ; Condition monitoring ; Cost analysis ; Data acquisition ; Discharges (electric) ; Dissolved gas analysis ; Dissolved gases ; Fault detection ; Fault diagnosis ; Feature extraction ; Gas analysis ; Life estimation ; Machine learning ; Mineral oils ; Oil insulation ; Power transformer insulation ; Power transformers ; Real time ; Remnant life estimation ; Training ; Transformers ; Voltage transformers</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</citedby><cites>FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</cites><orcidid>0000-0002-2094-3036 ; 0000-0003-4949-7647 ; 0000-0002-8206-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10439187$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jin, Lan</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Chan, Kit Yan</creatorcontrib><creatorcontrib>Abu-Siada, Ahmed</creatorcontrib><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</description><subject>Artificial neural networks</subject><subject>Asset management</subject><subject>Condition monitoring</subject><subject>Cost analysis</subject><subject>Data acquisition</subject><subject>Discharges (electric)</subject><subject>Dissolved gas analysis</subject><subject>Dissolved gases</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Gas analysis</subject><subject>Life estimation</subject><subject>Machine learning</subject><subject>Mineral oils</subject><subject>Oil insulation</subject><subject>Power transformer insulation</subject><subject>Power transformers</subject><subject>Real time</subject><subject>Remnant life estimation</subject><subject>Training</subject><subject>Transformers</subject><subject>Voltage transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhjS_oD0IevZWsj5sHc0mTRc2JJD2LJ7tp60Wr7XV8ybk31dbhxJdJObNzGM0RfFZ8JUQ3H5r1-ubx8dVxSu1ktIYy_W74qISxpZSS_P-zftjcUW05_k0GdL1RfF0jXhkd9D_DhOyLUKawrQrOyAcWEuEcx5OsMMDTjNrj8cUM5f5mNh9GMvN4YDpTH2Iz5jYnGCiPDuD7ETZiV0Hojg-ZcotEGsnGF8o0Kfig4eR8Or1vix-fb_5uf5Rbu9vN-t2W_aK27lslJcecyLjVac63SshregE9pUAtE3HvZSCD433Q8dBodXSZoKBquvFgPKy2Cy-Q4S9O6ZwgPTiIgT3D4hp5yDNoR_RQefB11YP9QBKmgEsGO1NXlnXeavOXl8Xr_wHf05Is9vHU8qByFVWVro2sq4ySy6sPkWihP7_VsHduS-39OXOfbnXvrLqy6IKiPhGoXLcppZ_AT4YkrA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Jin, Lan</creator><creator>Kim, Dowon</creator><creator>Chan, Kit Yan</creator><creator>Abu-Siada, Ahmed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2094-3036</orcidid><orcidid>https://orcid.org/0000-0003-4949-7647</orcidid><orcidid>https://orcid.org/0000-0002-8206-2189</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</title><author>Jin, Lan ; Kim, Dowon ; Chan, Kit Yan ; Abu-Siada, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Asset management</topic><topic>Condition monitoring</topic><topic>Cost analysis</topic><topic>Data acquisition</topic><topic>Discharges (electric)</topic><topic>Dissolved gas analysis</topic><topic>Dissolved gases</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Gas analysis</topic><topic>Life estimation</topic><topic>Machine learning</topic><topic>Mineral oils</topic><topic>Oil insulation</topic><topic>Power transformer insulation</topic><topic>Power transformers</topic><topic>Real time</topic><topic>Remnant life estimation</topic><topic>Training</topic><topic>Transformers</topic><topic>Voltage transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Lan</creatorcontrib><creatorcontrib>Kim, Dowon</creatorcontrib><creatorcontrib>Chan, Kit Yan</creatorcontrib><creatorcontrib>Abu-Siada, Ahmed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Lan</au><au>Kim, Dowon</au><au>Chan, Kit Yan</au><au>Abu-Siada, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Reliable operation of oil-immersed power transformers is crucial for electrical transmission and distribution networks. However, the aging of high voltage assets including power transformers along with the increasing of load demand have heightened the importance of adopting cost-effective asset management strategies. Dissolved gas analysis (DGA) has been recognized as a valuable diagnostic tool for detecting potential faults and monitoring the condition of oil-immersed power transformers. Traditional offline DGA method involves periodic sampling and laboratory analysis, which often results in delayed detection and response to emerging faults. To address these limitations, online DGA approach has been emerged to provide real-time monitoring and continuous data acquisition. This paper presents a new asset management approach for mineral oil-immersed power transformers by analysing the online DGA data using convolutional neural networks. The proposed approach provides real time solutions to classify emerging fault type and predict transformer health deterioration level with high accuracy. Results show that the accuracy of fault diagnostics of the proposed approach is approximately 87%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3366905</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2094-3036</orcidid><orcidid>https://orcid.org/0000-0003-4949-7647</orcidid><orcidid>https://orcid.org/0000-0002-8206-2189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_abfaf795d7da436da9a65f6c41771395
source IEEE Open Access Journals
subjects Artificial neural networks
Asset management
Condition monitoring
Cost analysis
Data acquisition
Discharges (electric)
Dissolved gas analysis
Dissolved gases
Fault detection
Fault diagnosis
Feature extraction
Gas analysis
Life estimation
Machine learning
Mineral oils
Oil insulation
Power transformer insulation
Power transformers
Real time
Remnant life estimation
Training
Transformers
Voltage transformers
title Deep Machine Learning-based Asset Management Approach for Oil-Immersed Power transformers using Dissolved Gas Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Machine%20Learning-based%20Asset%20Management%20Approach%20for%20Oil-Immersed%20Power%20transformers%20using%20Dissolved%20Gas%20Analysis&rft.jtitle=IEEE%20access&rft.au=Jin,%20Lan&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3366905&rft_dat=%3Cproquest_doaj_%3E2932576372%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-84f3fe6906f4b4b5c41391b1ec21ae98b0f3310d8ffdb0a4e953991b6a2bc1de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932576372&rft_id=info:pmid/&rft_ieee_id=10439187&rfr_iscdi=true