Loading…

Above and belowground carbon stock in a tropical forest in Brazil

An increase in atmospheric CO2 levels and global climate changes have led to an increased focus on CO2 capture mechanisms. The in situ quantification and spatial patterns of forest carbon stocks can provide a better picture of the carbon cycle and a deeper understanding of the functions and services...

Full description

Saved in:
Bibliographic Details
Published in:Acta scientiarum. Agronomy 2021-01, Vol.43, p.e48276-e48276
Main Authors: Dantas, Daniel, Terra, Marcela de Castro Nunes Santos, Pinto, Luiz Otávio Rodrigues, Calegario, Natalino, Maciel, Sabrina Mandarano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An increase in atmospheric CO2 levels and global climate changes have led to an increased focus on CO2 capture mechanisms. The in situ quantification and spatial patterns of forest carbon stocks can provide a better picture of the carbon cycle and a deeper understanding of the functions and services of forest ecosystems. This study aimed to determine the aboveground (tree trunks) and belowground (soil and fine roots, at four depths) carbon stocks in a tropical forest in Brazil and to evaluate the spatial patterns of carbon in the three different compartments and in the total stock. Census data from a semideciduous seasonal forest were used to estimate the aboveground carbon stock. The carbon stocks of soil and fine roots were sampled in 52 plots at depths of 0-20, 20-40, 40-60, and 60-80 cm, combined with the measured bulk density. The total estimated carbon stock was 267.52 Mg ha-1, of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors.
ISSN:1679-9275
1807-8621
1807-8621
DOI:10.4025/actasciagron.v43i1.48276