Loading…

Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity

Active electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS 2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state....

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-10, Vol.13 (1), p.5954-5954, Article 5954
Main Authors: Guo, Xiaowei, Song, Erhong, Zhao, Wei, Xu, Shumao, Zhao, Wenli, Lei, Yongjiu, Fang, Yuqiang, Liu, Jianjun, Huang, Fuqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3
cites cdi_FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3
container_end_page 5954
container_issue 1
container_start_page 5954
container_title Nature communications
container_volume 13
creator Guo, Xiaowei
Song, Erhong
Zhao, Wei
Xu, Shumao
Zhao, Wenli
Lei, Yongjiu
Fang, Yuqiang
Liu, Jianjun
Huang, Fuqiang
description Active electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS 2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state. Herein, the charge self-regulation effect mediated by tuning Mo−Mo bonds and S vacancies is revealed in metastable trigonal MoS 2 (1T'''-MoS 2 ) structure, which is favarable for the generation of active electronic states to boost the hydrogen evolution reaction activity. The optimal 1T'''-MoS 2 sample exhibits a low overpotential of 158 mV at 10 mA cm −2 and a Tafel slope of 74.5 mV dec −1 in acidic conditions, which are far exceeding the 2H-MoS 2 counterpart (369 mV and 137 mV dec −1 ). Theoretical modeling indicates that the boosted performance is attributed to the formation of massive active electronic states induced by the charge self-regulation effect of Mo−Mo bonds in defective 1T'''-MoS 2 with rich S vacancies. Metal chalcogenides have shown promising performances for renewable hydrogen evolution and such activities are sensitive to the material electronic structures. Here, authors modulate the electronic properties of molybdenum sulfide in 1T'''-MoS 2 for hydrogen evolution electrocatalysis.
doi_str_mv 10.1038/s41467-022-33636-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac1e9be547c240db80cc6bdf78ab3579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac1e9be547c240db80cc6bdf78ab3579</doaj_id><sourcerecordid>2723291862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3</originalsourceid><addsrcrecordid>eNp9kktv1DAURiMEotXQP8DKEothE_ArjrNBQiMelYpYtKwtx75OPMrYxU4Gzb_HTCqgLPDGr3OPLN-vql4S_IZgJt9mTrhoa0xpzZhgopZPqkuKOalJS9nTv9YX1VXOe1wG64jk_Hl1wQQlomv4ZXXYjToNgDJMrk4wLJOefQzIB0Tutttt_SXeUpTntJh5SYB--HlEyZsR3aKjNjoYDxm5mBCEsezAovFkUxwgIDjGaTnbtJn90c-nF9Uzp6cMVw_zpvr28cPd7nN98_XT9e79TW0a0s41M5ToxjrjCGMN08aajnbMghWOc8Dc6cZJ4bqWWkuY5EJ0RrYEWoEpNJZtquvVa6Peq_vkDzqdVNRenQ9iGpROszcTKG0IdD00vDWUY9tLbIzorWul7lnTdsX1bnXdL_0BrIEwJz09kj6-CX5UQzyqrmmwLL3aVK8fBCl-XyDP6uCzgWnSAeKSFS09kqSwvKCv_kH3cUmhfNWZoqV_ghaKrpRJMecE7vdjCFa_wqHWcKgSDnUOh5KliK1FucBhgPRH_Z-qnwB4u8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723291862</pqid></control><display><type>article</type><title>Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Guo, Xiaowei ; Song, Erhong ; Zhao, Wei ; Xu, Shumao ; Zhao, Wenli ; Lei, Yongjiu ; Fang, Yuqiang ; Liu, Jianjun ; Huang, Fuqiang</creator><creatorcontrib>Guo, Xiaowei ; Song, Erhong ; Zhao, Wei ; Xu, Shumao ; Zhao, Wenli ; Lei, Yongjiu ; Fang, Yuqiang ; Liu, Jianjun ; Huang, Fuqiang</creatorcontrib><description>Active electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS 2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state. Herein, the charge self-regulation effect mediated by tuning Mo−Mo bonds and S vacancies is revealed in metastable trigonal MoS 2 (1T'''-MoS 2 ) structure, which is favarable for the generation of active electronic states to boost the hydrogen evolution reaction activity. The optimal 1T'''-MoS 2 sample exhibits a low overpotential of 158 mV at 10 mA cm −2 and a Tafel slope of 74.5 mV dec −1 in acidic conditions, which are far exceeding the 2H-MoS 2 counterpart (369 mV and 137 mV dec −1 ). Theoretical modeling indicates that the boosted performance is attributed to the formation of massive active electronic states induced by the charge self-regulation effect of Mo−Mo bonds in defective 1T'''-MoS 2 with rich S vacancies. Metal chalcogenides have shown promising performances for renewable hydrogen evolution and such activities are sensitive to the material electronic structures. Here, authors modulate the electronic properties of molybdenum sulfide in 1T'''-MoS 2 for hydrogen evolution electrocatalysis.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33636-8</identifier><identifier>PMID: 36216954</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/133 ; 140/146 ; 147/135 ; 147/137 ; 147/143 ; 639/301/299/886 ; 639/638/161/886 ; 639/925/357/1018 ; Catalysts ; Chalcogenides ; Electron states ; Evolution ; Humanities and Social Sciences ; Hydrogen ; Hydrogen evolution reactions ; Molybdenum ; Molybdenum disulfide ; multidisciplinary ; Science ; Science (multidisciplinary) ; Transition metal compounds</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5954-5954, Article 5954</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3</citedby><cites>FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3</cites><orcidid>0000-0003-2452-6966 ; 0000-0003-0526-5473 ; 0000-0003-2287-3307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2723291862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2723291862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Song, Erhong</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Xu, Shumao</creatorcontrib><creatorcontrib>Zhao, Wenli</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Fang, Yuqiang</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><title>Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Active electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS 2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state. Herein, the charge self-regulation effect mediated by tuning Mo−Mo bonds and S vacancies is revealed in metastable trigonal MoS 2 (1T'''-MoS 2 ) structure, which is favarable for the generation of active electronic states to boost the hydrogen evolution reaction activity. The optimal 1T'''-MoS 2 sample exhibits a low overpotential of 158 mV at 10 mA cm −2 and a Tafel slope of 74.5 mV dec −1 in acidic conditions, which are far exceeding the 2H-MoS 2 counterpart (369 mV and 137 mV dec −1 ). Theoretical modeling indicates that the boosted performance is attributed to the formation of massive active electronic states induced by the charge self-regulation effect of Mo−Mo bonds in defective 1T'''-MoS 2 with rich S vacancies. Metal chalcogenides have shown promising performances for renewable hydrogen evolution and such activities are sensitive to the material electronic structures. Here, authors modulate the electronic properties of molybdenum sulfide in 1T'''-MoS 2 for hydrogen evolution electrocatalysis.</description><subject>140/131</subject><subject>140/133</subject><subject>140/146</subject><subject>147/135</subject><subject>147/137</subject><subject>147/143</subject><subject>639/301/299/886</subject><subject>639/638/161/886</subject><subject>639/925/357/1018</subject><subject>Catalysts</subject><subject>Chalcogenides</subject><subject>Electron states</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transition metal compounds</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAURiMEotXQP8DKEothE_ArjrNBQiMelYpYtKwtx75OPMrYxU4Gzb_HTCqgLPDGr3OPLN-vql4S_IZgJt9mTrhoa0xpzZhgopZPqkuKOalJS9nTv9YX1VXOe1wG64jk_Hl1wQQlomv4ZXXYjToNgDJMrk4wLJOefQzIB0Tutttt_SXeUpTntJh5SYB--HlEyZsR3aKjNjoYDxm5mBCEsezAovFkUxwgIDjGaTnbtJn90c-nF9Uzp6cMVw_zpvr28cPd7nN98_XT9e79TW0a0s41M5ToxjrjCGMN08aajnbMghWOc8Dc6cZJ4bqWWkuY5EJ0RrYEWoEpNJZtquvVa6Peq_vkDzqdVNRenQ9iGpROszcTKG0IdD00vDWUY9tLbIzorWul7lnTdsX1bnXdL_0BrIEwJz09kj6-CX5UQzyqrmmwLL3aVK8fBCl-XyDP6uCzgWnSAeKSFS09kqSwvKCv_kH3cUmhfNWZoqV_ghaKrpRJMecE7vdjCFa_wqHWcKgSDnUOh5KliK1FucBhgPRH_Z-qnwB4u8Q</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Guo, Xiaowei</creator><creator>Song, Erhong</creator><creator>Zhao, Wei</creator><creator>Xu, Shumao</creator><creator>Zhao, Wenli</creator><creator>Lei, Yongjiu</creator><creator>Fang, Yuqiang</creator><creator>Liu, Jianjun</creator><creator>Huang, Fuqiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2452-6966</orcidid><orcidid>https://orcid.org/0000-0003-0526-5473</orcidid><orcidid>https://orcid.org/0000-0003-2287-3307</orcidid></search><sort><creationdate>20221010</creationdate><title>Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity</title><author>Guo, Xiaowei ; Song, Erhong ; Zhao, Wei ; Xu, Shumao ; Zhao, Wenli ; Lei, Yongjiu ; Fang, Yuqiang ; Liu, Jianjun ; Huang, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/131</topic><topic>140/133</topic><topic>140/146</topic><topic>147/135</topic><topic>147/137</topic><topic>147/143</topic><topic>639/301/299/886</topic><topic>639/638/161/886</topic><topic>639/925/357/1018</topic><topic>Catalysts</topic><topic>Chalcogenides</topic><topic>Electron states</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Song, Erhong</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Xu, Shumao</creatorcontrib><creatorcontrib>Zhao, Wenli</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Fang, Yuqiang</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaowei</au><au>Song, Erhong</au><au>Zhao, Wei</au><au>Xu, Shumao</au><au>Zhao, Wenli</au><au>Lei, Yongjiu</au><au>Fang, Yuqiang</au><au>Liu, Jianjun</au><au>Huang, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-10-10</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5954</spage><epage>5954</epage><pages>5954-5954</pages><artnum>5954</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Active electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS 2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state. Herein, the charge self-regulation effect mediated by tuning Mo−Mo bonds and S vacancies is revealed in metastable trigonal MoS 2 (1T'''-MoS 2 ) structure, which is favarable for the generation of active electronic states to boost the hydrogen evolution reaction activity. The optimal 1T'''-MoS 2 sample exhibits a low overpotential of 158 mV at 10 mA cm −2 and a Tafel slope of 74.5 mV dec −1 in acidic conditions, which are far exceeding the 2H-MoS 2 counterpart (369 mV and 137 mV dec −1 ). Theoretical modeling indicates that the boosted performance is attributed to the formation of massive active electronic states induced by the charge self-regulation effect of Mo−Mo bonds in defective 1T'''-MoS 2 with rich S vacancies. Metal chalcogenides have shown promising performances for renewable hydrogen evolution and such activities are sensitive to the material electronic structures. Here, authors modulate the electronic properties of molybdenum sulfide in 1T'''-MoS 2 for hydrogen evolution electrocatalysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36216954</pmid><doi>10.1038/s41467-022-33636-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2452-6966</orcidid><orcidid>https://orcid.org/0000-0003-0526-5473</orcidid><orcidid>https://orcid.org/0000-0003-2287-3307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-10, Vol.13 (1), p.5954-5954, Article 5954
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ac1e9be547c240db80cc6bdf78ab3579
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
140/133
140/146
147/135
147/137
147/143
639/301/299/886
639/638/161/886
639/925/357/1018
Catalysts
Chalcogenides
Electron states
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Molybdenum
Molybdenum disulfide
multidisciplinary
Science
Science (multidisciplinary)
Transition metal compounds
title Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20self-regulation%20in%201T'''-MoS2%20structure%20with%20rich%20S%20vacancies%20for%20enhanced%20hydrogen%20evolution%20activity&rft.jtitle=Nature%20communications&rft.au=Guo,%20Xiaowei&rft.date=2022-10-10&rft.volume=13&rft.issue=1&rft.spage=5954&rft.epage=5954&rft.pages=5954-5954&rft.artnum=5954&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33636-8&rft_dat=%3Cproquest_doaj_%3E2723291862%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-3c21a5dfcf13353acdc9293ded6f44e04fa5f86f972dd1384669c871e7602e5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723291862&rft_id=info:pmid/36216954&rfr_iscdi=true