Loading…

Synapse-specific opioid modulation of thalamo-cortico-striatal circuits

The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate tran...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2019-05, Vol.8
Main Authors: Birdsong, William T, Jongbloets, Bart C, Engeln, Kim A, Wang, Dong, Scherrer, Grégory, Mao, Tianyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3
cites cdi_FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 8
creator Birdsong, William T
Jongbloets, Bart C
Engeln, Kim A
Wang, Dong
Scherrer, Grégory
Mao, Tianyi
description The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.
doi_str_mv 10.7554/elife.45146
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac340174c74f4ca198676c590356d29a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596800615</galeid><doaj_id>oai_doaj_org_article_ac340174c74f4ca198676c590356d29a</doaj_id><sourcerecordid>A596800615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKm98l4GvFHKrMnka-ZGKMXWhQXBKngXzuRjm2VmMiaZYv-9mW6tXTG5SDh5zpuTk7coXmO0EozRD6Z31qwow5Q_K45rxFCFGvrj-ZP9UXEa4w7lIWjT4PZlcUQwalvByHFxdX03whRNFSejnHWq9JPzTpeD13MPyfmx9LZMN9DD4CvlQ3LKVzEFBwn6UrmgZpfiq-KFhT6a04f1pPh--enbxedq8-VqfXG-qRSndao4YIFopzrBNAMOBowWLWVKWNRpSkRNlNbUGGpp19JaCd10FDCHTODGkpNivdfVHnZyCm6AcCc9OHkf8GErYSmxNxIUoQgLqkQWU4DbhguuWIsI47puIWt93GtNczcYrcyYAvQHoocno7uRW38rOaM415oF3j0IBP9zNjHJwUVl-h5G4-co65rghvKmXtC3_6A7P4cxt2qhCGI1F-QvtYX8ADdan-9Vi6g8Zy1vEOKYZWr1HypPbYb8OaOxLscPEt4fJGQmmV9pC3OMcn399ZA927Mq-BiDsY_9wEgulpNmky0n7y2X6TdPW_jI_jEY-Q2saNCl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233052673</pqid></control><display><type>article</type><title>Synapse-specific opioid modulation of thalamo-cortico-striatal circuits</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Birdsong, William T ; Jongbloets, Bart C ; Engeln, Kim A ; Wang, Dong ; Scherrer, Grégory ; Mao, Tianyi</creator><creatorcontrib>Birdsong, William T ; Jongbloets, Bart C ; Engeln, Kim A ; Wang, Dong ; Scherrer, Grégory ; Mao, Tianyi</creatorcontrib><description>The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.45146</identifier><identifier>PMID: 31099753</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Agonists ; Analgesics, Opioid - metabolism ; Animals ; Brain ; Corpus Striatum - drug effects ; cortex ; Cortex (cingulate) ; Experiments ; feed-forward inhibition ; GABA ; Glutamate ; Gyrus Cinguli - drug effects ; Interneurons ; Learning - drug effects ; Legal fees ; Mice ; Narcotics ; Neostriatum ; Nerve Net - drug effects ; Neurons ; Neuroscience ; Neurosciences ; opioid ; opioid receptor ; Opioid receptors (type delta) ; Opioid receptors (type mu) ; Opioids ; Pain ; Parvalbumin ; Physiological aspects ; Prefrontal cortex ; Pyramidal cells ; Receptors, Opioid, delta - agonists ; Receptors, Opioid, mu - agonists ; Reinforcement ; Software ; Spiny neurons ; Statistical analysis ; Striatum ; Synapses ; Synapses - drug effects ; Thalamus ; Thalamus - drug effects ; γ-Aminobutyric acid</subject><ispartof>eLife, 2019-05, Vol.8</ispartof><rights>2019, Birdsong et al.</rights><rights>COPYRIGHT 2019 eLife Science Publications, Ltd.</rights><rights>2019, Birdsong et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Birdsong et al 2019 Birdsong et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3</citedby><cites>FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3</cites><orcidid>0000-0003-4799-333X ; 0000-0002-3532-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2233052673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2233052673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31099753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birdsong, William T</creatorcontrib><creatorcontrib>Jongbloets, Bart C</creatorcontrib><creatorcontrib>Engeln, Kim A</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Scherrer, Grégory</creatorcontrib><creatorcontrib>Mao, Tianyi</creatorcontrib><title>Synapse-specific opioid modulation of thalamo-cortico-striatal circuits</title><title>eLife</title><addtitle>Elife</addtitle><description>The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.</description><subject>Agonists</subject><subject>Analgesics, Opioid - metabolism</subject><subject>Animals</subject><subject>Brain</subject><subject>Corpus Striatum - drug effects</subject><subject>cortex</subject><subject>Cortex (cingulate)</subject><subject>Experiments</subject><subject>feed-forward inhibition</subject><subject>GABA</subject><subject>Glutamate</subject><subject>Gyrus Cinguli - drug effects</subject><subject>Interneurons</subject><subject>Learning - drug effects</subject><subject>Legal fees</subject><subject>Mice</subject><subject>Narcotics</subject><subject>Neostriatum</subject><subject>Nerve Net - drug effects</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>opioid</subject><subject>opioid receptor</subject><subject>Opioid receptors (type delta)</subject><subject>Opioid receptors (type mu)</subject><subject>Opioids</subject><subject>Pain</subject><subject>Parvalbumin</subject><subject>Physiological aspects</subject><subject>Prefrontal cortex</subject><subject>Pyramidal cells</subject><subject>Receptors, Opioid, delta - agonists</subject><subject>Receptors, Opioid, mu - agonists</subject><subject>Reinforcement</subject><subject>Software</subject><subject>Spiny neurons</subject><subject>Statistical analysis</subject><subject>Striatum</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Thalamus</subject><subject>Thalamus - drug effects</subject><subject>γ-Aminobutyric acid</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKm98l4GvFHKrMnka-ZGKMXWhQXBKngXzuRjm2VmMiaZYv-9mW6tXTG5SDh5zpuTk7coXmO0EozRD6Z31qwow5Q_K45rxFCFGvrj-ZP9UXEa4w7lIWjT4PZlcUQwalvByHFxdX03whRNFSejnHWq9JPzTpeD13MPyfmx9LZMN9DD4CvlQ3LKVzEFBwn6UrmgZpfiq-KFhT6a04f1pPh--enbxedq8-VqfXG-qRSndao4YIFopzrBNAMOBowWLWVKWNRpSkRNlNbUGGpp19JaCd10FDCHTODGkpNivdfVHnZyCm6AcCc9OHkf8GErYSmxNxIUoQgLqkQWU4DbhguuWIsI47puIWt93GtNczcYrcyYAvQHoocno7uRW38rOaM415oF3j0IBP9zNjHJwUVl-h5G4-co65rghvKmXtC3_6A7P4cxt2qhCGI1F-QvtYX8ADdan-9Vi6g8Zy1vEOKYZWr1HypPbYb8OaOxLscPEt4fJGQmmV9pC3OMcn399ZA927Mq-BiDsY_9wEgulpNmky0n7y2X6TdPW_jI_jEY-Q2saNCl</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Birdsong, William T</creator><creator>Jongbloets, Bart C</creator><creator>Engeln, Kim A</creator><creator>Wang, Dong</creator><creator>Scherrer, Grégory</creator><creator>Mao, Tianyi</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4799-333X</orcidid><orcidid>https://orcid.org/0000-0002-3532-8319</orcidid></search><sort><creationdate>20190517</creationdate><title>Synapse-specific opioid modulation of thalamo-cortico-striatal circuits</title><author>Birdsong, William T ; Jongbloets, Bart C ; Engeln, Kim A ; Wang, Dong ; Scherrer, Grégory ; Mao, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agonists</topic><topic>Analgesics, Opioid - metabolism</topic><topic>Animals</topic><topic>Brain</topic><topic>Corpus Striatum - drug effects</topic><topic>cortex</topic><topic>Cortex (cingulate)</topic><topic>Experiments</topic><topic>feed-forward inhibition</topic><topic>GABA</topic><topic>Glutamate</topic><topic>Gyrus Cinguli - drug effects</topic><topic>Interneurons</topic><topic>Learning - drug effects</topic><topic>Legal fees</topic><topic>Mice</topic><topic>Narcotics</topic><topic>Neostriatum</topic><topic>Nerve Net - drug effects</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>opioid</topic><topic>opioid receptor</topic><topic>Opioid receptors (type delta)</topic><topic>Opioid receptors (type mu)</topic><topic>Opioids</topic><topic>Pain</topic><topic>Parvalbumin</topic><topic>Physiological aspects</topic><topic>Prefrontal cortex</topic><topic>Pyramidal cells</topic><topic>Receptors, Opioid, delta - agonists</topic><topic>Receptors, Opioid, mu - agonists</topic><topic>Reinforcement</topic><topic>Software</topic><topic>Spiny neurons</topic><topic>Statistical analysis</topic><topic>Striatum</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Thalamus</topic><topic>Thalamus - drug effects</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birdsong, William T</creatorcontrib><creatorcontrib>Jongbloets, Bart C</creatorcontrib><creatorcontrib>Engeln, Kim A</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Scherrer, Grégory</creatorcontrib><creatorcontrib>Mao, Tianyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birdsong, William T</au><au>Jongbloets, Bart C</au><au>Engeln, Kim A</au><au>Wang, Dong</au><au>Scherrer, Grégory</au><au>Mao, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapse-specific opioid modulation of thalamo-cortico-striatal circuits</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>31099753</pmid><doi>10.7554/elife.45146</doi><orcidid>https://orcid.org/0000-0003-4799-333X</orcidid><orcidid>https://orcid.org/0000-0002-3532-8319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2019-05, Vol.8
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ac340174c74f4ca198676c590356d29a
source PubMed (Medline); Access via ProQuest (Open Access)
subjects Agonists
Analgesics, Opioid - metabolism
Animals
Brain
Corpus Striatum - drug effects
cortex
Cortex (cingulate)
Experiments
feed-forward inhibition
GABA
Glutamate
Gyrus Cinguli - drug effects
Interneurons
Learning - drug effects
Legal fees
Mice
Narcotics
Neostriatum
Nerve Net - drug effects
Neurons
Neuroscience
Neurosciences
opioid
opioid receptor
Opioid receptors (type delta)
Opioid receptors (type mu)
Opioids
Pain
Parvalbumin
Physiological aspects
Prefrontal cortex
Pyramidal cells
Receptors, Opioid, delta - agonists
Receptors, Opioid, mu - agonists
Reinforcement
Software
Spiny neurons
Statistical analysis
Striatum
Synapses
Synapses - drug effects
Thalamus
Thalamus - drug effects
γ-Aminobutyric acid
title Synapse-specific opioid modulation of thalamo-cortico-striatal circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapse-specific%20opioid%20modulation%20of%20thalamo-cortico-striatal%20circuits&rft.jtitle=eLife&rft.au=Birdsong,%20William%20T&rft.date=2019-05-17&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.45146&rft_dat=%3Cgale_doaj_%3EA596800615%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-6a1704bcb75d5a6aeaed7945c7f0bd43723cdd4ee4f4b942c7d8b4a16ac7f18f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233052673&rft_id=info:pmid/31099753&rft_galeid=A596800615&rfr_iscdi=true