Loading…
CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy
Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learn...
Saved in:
Published in: | Communications biology 2021-02, Vol.4 (1), p.200-200, Article 200 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493 |
container_end_page | 200 |
container_issue | 1 |
container_start_page | 200 |
container_title | Communications biology |
container_volume | 4 |
creator | George, Blesson Assaiya, Anshul Roy, Robin J. Kembhavi, Ajit Chauhan, Radha Paul, Geetha Kumar, Janesh Philip, Ninan S. |
description | Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.
George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing. |
doi_str_mv | 10.1038/s42003-021-01721-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0</doaj_id><sourcerecordid>2489438692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXbP8ABReLCJWX8kTi-IFWr0laqREXhbE1sJ_WSxMHOIu2_r7dZlpYDF3s088zr8ejNsncEzgmw-lPkFIAVQEkBRKSTvMqOKZOyYBWnr5_FR9lZjGsAIFLKivG32RFjZS0FEcfZtLq4v7-7_Ja7mGMe7YDj7HQKusGOM87Oj0WD0Zp8wpAqvc0np3-6scux73xw88OQtz7kMaV6WxwoHba-sL3Vc_BjPjgdfNR-2p5mb1rsoz3b3yfZjy-X31fXxe3Xq5vVxW2hSw5zwTRKSnTbcFKRWhpdNsYiLxtbSqTIEESLCLxCIhrWNG1rmAVoa26ErrhkJ9nNoms8rtUU3IBhqzw69ZTwoVP7URVqzrGqSgml4SVQBCsAgUloNdUGktbnRWvaNIM1Om0mYP9C9GVldA-q87-VqGsu6G6Yj3uB4H9tbJzV4KK2fY-j9ZuoKJdAKBdQJ_TDP-jab8KYVpWoWnJWV5Imii7Ubq0x2PYwDAG184da_KGSP9STPxRJTe-ff-PQ8scNCWALEFNp7Gz4-_Z_ZB8BY-fH2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489438692</pqid></control><display><type>article</type><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</creator><creatorcontrib>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</creatorcontrib><description>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.
George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-01721-1</identifier><identifier>PMID: 33589717</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/114/1314 ; 631/1647/2258/1258/1259 ; Algorithms ; Animals ; Automation ; Biology ; Biomedical and Life Sciences ; Cryoelectron Microscopy ; Data processing ; Deep Learning ; Electron microscopy ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Impurities ; Life Sciences ; Macromolecules ; Micrography ; Microscopy ; Models, Molecular ; Protein Conformation ; Proteins ; Proteins - ultrastructure ; Segmentation ; Semantics ; Single Molecule Imaging</subject><ispartof>Communications biology, 2021-02, Vol.4 (1), p.200-200, Article 200</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</citedby><cites>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</cites><orcidid>0000-0003-0767-3788 ; 0000-0003-1632-1637 ; 0000-0003-3605-2331 ; 0000-0002-0058-8217 ; 0000-0003-3001-4692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884729/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2489438692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33589717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Blesson</creatorcontrib><creatorcontrib>Assaiya, Anshul</creatorcontrib><creatorcontrib>Roy, Robin J.</creatorcontrib><creatorcontrib>Kembhavi, Ajit</creatorcontrib><creatorcontrib>Chauhan, Radha</creatorcontrib><creatorcontrib>Paul, Geetha</creatorcontrib><creatorcontrib>Kumar, Janesh</creatorcontrib><creatorcontrib>Philip, Ninan S.</creatorcontrib><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.
George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</description><subject>101/28</subject><subject>631/114/1314</subject><subject>631/1647/2258/1258/1259</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Automation</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cryoelectron Microscopy</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Electron microscopy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Impurities</subject><subject>Life Sciences</subject><subject>Macromolecules</subject><subject>Micrography</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - ultrastructure</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Single Molecule Imaging</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXbP8ABReLCJWX8kTi-IFWr0laqREXhbE1sJ_WSxMHOIu2_r7dZlpYDF3s088zr8ejNsncEzgmw-lPkFIAVQEkBRKSTvMqOKZOyYBWnr5_FR9lZjGsAIFLKivG32RFjZS0FEcfZtLq4v7-7_Ja7mGMe7YDj7HQKusGOM87Oj0WD0Zp8wpAqvc0np3-6scux73xw88OQtz7kMaV6WxwoHba-sL3Vc_BjPjgdfNR-2p5mb1rsoz3b3yfZjy-X31fXxe3Xq5vVxW2hSw5zwTRKSnTbcFKRWhpdNsYiLxtbSqTIEESLCLxCIhrWNG1rmAVoa26ErrhkJ9nNoms8rtUU3IBhqzw69ZTwoVP7URVqzrGqSgml4SVQBCsAgUloNdUGktbnRWvaNIM1Om0mYP9C9GVldA-q87-VqGsu6G6Yj3uB4H9tbJzV4KK2fY-j9ZuoKJdAKBdQJ_TDP-jab8KYVpWoWnJWV5Imii7Ubq0x2PYwDAG184da_KGSP9STPxRJTe-ff-PQ8scNCWALEFNp7Gz4-_Z_ZB8BY-fH2Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>George, Blesson</creator><creator>Assaiya, Anshul</creator><creator>Roy, Robin J.</creator><creator>Kembhavi, Ajit</creator><creator>Chauhan, Radha</creator><creator>Paul, Geetha</creator><creator>Kumar, Janesh</creator><creator>Philip, Ninan S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0767-3788</orcidid><orcidid>https://orcid.org/0000-0003-1632-1637</orcidid><orcidid>https://orcid.org/0000-0003-3605-2331</orcidid><orcidid>https://orcid.org/0000-0002-0058-8217</orcidid><orcidid>https://orcid.org/0000-0003-3001-4692</orcidid></search><sort><creationdate>20210215</creationdate><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><author>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/114/1314</topic><topic>631/1647/2258/1258/1259</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Automation</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cryoelectron Microscopy</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Electron microscopy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Impurities</topic><topic>Life Sciences</topic><topic>Macromolecules</topic><topic>Micrography</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - ultrastructure</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Single Molecule Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Blesson</creatorcontrib><creatorcontrib>Assaiya, Anshul</creatorcontrib><creatorcontrib>Roy, Robin J.</creatorcontrib><creatorcontrib>Kembhavi, Ajit</creatorcontrib><creatorcontrib>Chauhan, Radha</creatorcontrib><creatorcontrib>Paul, Geetha</creatorcontrib><creatorcontrib>Kumar, Janesh</creatorcontrib><creatorcontrib>Philip, Ninan S.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Blesson</au><au>Assaiya, Anshul</au><au>Roy, Robin J.</au><au>Kembhavi, Ajit</au><au>Chauhan, Radha</au><au>Paul, Geetha</au><au>Kumar, Janesh</au><au>Philip, Ninan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>200</spage><epage>200</epage><pages>200-200</pages><artnum>200</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.
George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33589717</pmid><doi>10.1038/s42003-021-01721-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0767-3788</orcidid><orcidid>https://orcid.org/0000-0003-1632-1637</orcidid><orcidid>https://orcid.org/0000-0003-3605-2331</orcidid><orcidid>https://orcid.org/0000-0002-0058-8217</orcidid><orcidid>https://orcid.org/0000-0003-3001-4692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2021-02, Vol.4 (1), p.200-200, Article 200 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/28 631/114/1314 631/1647/2258/1258/1259 Algorithms Animals Automation Biology Biomedical and Life Sciences Cryoelectron Microscopy Data processing Deep Learning Electron microscopy Humans Image processing Image Processing, Computer-Assisted Impurities Life Sciences Macromolecules Micrography Microscopy Models, Molecular Protein Conformation Proteins Proteins - ultrastructure Segmentation Semantics Single Molecule Imaging |
title | CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CASSPER%20is%20a%20semantic%20segmentation-based%20particle%20picking%20algorithm%20for%20single-particle%20cryo-electron%20microscopy&rft.jtitle=Communications%20biology&rft.au=George,%20Blesson&rft.date=2021-02-15&rft.volume=4&rft.issue=1&rft.spage=200&rft.epage=200&rft.pages=200-200&rft.artnum=200&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-01721-1&rft_dat=%3Cproquest_doaj_%3E2489438692%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489438692&rft_id=info:pmid/33589717&rfr_iscdi=true |