Loading…

CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy

Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learn...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2021-02, Vol.4 (1), p.200-200, Article 200
Main Authors: George, Blesson, Assaiya, Anshul, Roy, Robin J., Kembhavi, Ajit, Chauhan, Radha, Paul, Geetha, Kumar, Janesh, Philip, Ninan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493
cites cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493
container_end_page 200
container_issue 1
container_start_page 200
container_title Communications biology
container_volume 4
creator George, Blesson
Assaiya, Anshul
Roy, Robin J.
Kembhavi, Ajit
Chauhan, Radha
Paul, Geetha
Kumar, Janesh
Philip, Ninan S.
description Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation. George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.
doi_str_mv 10.1038/s42003-021-01721-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0</doaj_id><sourcerecordid>2489438692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXbP8ABReLCJWX8kTi-IFWr0laqREXhbE1sJ_WSxMHOIu2_r7dZlpYDF3s088zr8ejNsncEzgmw-lPkFIAVQEkBRKSTvMqOKZOyYBWnr5_FR9lZjGsAIFLKivG32RFjZS0FEcfZtLq4v7-7_Ja7mGMe7YDj7HQKusGOM87Oj0WD0Zp8wpAqvc0np3-6scux73xw88OQtz7kMaV6WxwoHba-sL3Vc_BjPjgdfNR-2p5mb1rsoz3b3yfZjy-X31fXxe3Xq5vVxW2hSw5zwTRKSnTbcFKRWhpdNsYiLxtbSqTIEESLCLxCIhrWNG1rmAVoa26ErrhkJ9nNoms8rtUU3IBhqzw69ZTwoVP7URVqzrGqSgml4SVQBCsAgUloNdUGktbnRWvaNIM1Om0mYP9C9GVldA-q87-VqGsu6G6Yj3uB4H9tbJzV4KK2fY-j9ZuoKJdAKBdQJ_TDP-jab8KYVpWoWnJWV5Imii7Ubq0x2PYwDAG184da_KGSP9STPxRJTe-ff-PQ8scNCWALEFNp7Gz4-_Z_ZB8BY-fH2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489438692</pqid></control><display><type>article</type><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</creator><creatorcontrib>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</creatorcontrib><description>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation. George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-01721-1</identifier><identifier>PMID: 33589717</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/114/1314 ; 631/1647/2258/1258/1259 ; Algorithms ; Animals ; Automation ; Biology ; Biomedical and Life Sciences ; Cryoelectron Microscopy ; Data processing ; Deep Learning ; Electron microscopy ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Impurities ; Life Sciences ; Macromolecules ; Micrography ; Microscopy ; Models, Molecular ; Protein Conformation ; Proteins ; Proteins - ultrastructure ; Segmentation ; Semantics ; Single Molecule Imaging</subject><ispartof>Communications biology, 2021-02, Vol.4 (1), p.200-200, Article 200</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</citedby><cites>FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</cites><orcidid>0000-0003-0767-3788 ; 0000-0003-1632-1637 ; 0000-0003-3605-2331 ; 0000-0002-0058-8217 ; 0000-0003-3001-4692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884729/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2489438692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33589717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Blesson</creatorcontrib><creatorcontrib>Assaiya, Anshul</creatorcontrib><creatorcontrib>Roy, Robin J.</creatorcontrib><creatorcontrib>Kembhavi, Ajit</creatorcontrib><creatorcontrib>Chauhan, Radha</creatorcontrib><creatorcontrib>Paul, Geetha</creatorcontrib><creatorcontrib>Kumar, Janesh</creatorcontrib><creatorcontrib>Philip, Ninan S.</creatorcontrib><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation. George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</description><subject>101/28</subject><subject>631/114/1314</subject><subject>631/1647/2258/1258/1259</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Automation</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cryoelectron Microscopy</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Electron microscopy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Impurities</subject><subject>Life Sciences</subject><subject>Macromolecules</subject><subject>Micrography</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - ultrastructure</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Single Molecule Imaging</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXbP8ABReLCJWX8kTi-IFWr0laqREXhbE1sJ_WSxMHOIu2_r7dZlpYDF3s088zr8ejNsncEzgmw-lPkFIAVQEkBRKSTvMqOKZOyYBWnr5_FR9lZjGsAIFLKivG32RFjZS0FEcfZtLq4v7-7_Ja7mGMe7YDj7HQKusGOM87Oj0WD0Zp8wpAqvc0np3-6scux73xw88OQtz7kMaV6WxwoHba-sL3Vc_BjPjgdfNR-2p5mb1rsoz3b3yfZjy-X31fXxe3Xq5vVxW2hSw5zwTRKSnTbcFKRWhpdNsYiLxtbSqTIEESLCLxCIhrWNG1rmAVoa26ErrhkJ9nNoms8rtUU3IBhqzw69ZTwoVP7URVqzrGqSgml4SVQBCsAgUloNdUGktbnRWvaNIM1Om0mYP9C9GVldA-q87-VqGsu6G6Yj3uB4H9tbJzV4KK2fY-j9ZuoKJdAKBdQJ_TDP-jab8KYVpWoWnJWV5Imii7Ubq0x2PYwDAG184da_KGSP9STPxRJTe-ff-PQ8scNCWALEFNp7Gz4-_Z_ZB8BY-fH2Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>George, Blesson</creator><creator>Assaiya, Anshul</creator><creator>Roy, Robin J.</creator><creator>Kembhavi, Ajit</creator><creator>Chauhan, Radha</creator><creator>Paul, Geetha</creator><creator>Kumar, Janesh</creator><creator>Philip, Ninan S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0767-3788</orcidid><orcidid>https://orcid.org/0000-0003-1632-1637</orcidid><orcidid>https://orcid.org/0000-0003-3605-2331</orcidid><orcidid>https://orcid.org/0000-0002-0058-8217</orcidid><orcidid>https://orcid.org/0000-0003-3001-4692</orcidid></search><sort><creationdate>20210215</creationdate><title>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</title><author>George, Blesson ; Assaiya, Anshul ; Roy, Robin J. ; Kembhavi, Ajit ; Chauhan, Radha ; Paul, Geetha ; Kumar, Janesh ; Philip, Ninan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/114/1314</topic><topic>631/1647/2258/1258/1259</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Automation</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cryoelectron Microscopy</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Electron microscopy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Impurities</topic><topic>Life Sciences</topic><topic>Macromolecules</topic><topic>Micrography</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - ultrastructure</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Single Molecule Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Blesson</creatorcontrib><creatorcontrib>Assaiya, Anshul</creatorcontrib><creatorcontrib>Roy, Robin J.</creatorcontrib><creatorcontrib>Kembhavi, Ajit</creatorcontrib><creatorcontrib>Chauhan, Radha</creatorcontrib><creatorcontrib>Paul, Geetha</creatorcontrib><creatorcontrib>Kumar, Janesh</creatorcontrib><creatorcontrib>Philip, Ninan S.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Blesson</au><au>Assaiya, Anshul</au><au>Roy, Robin J.</au><au>Kembhavi, Ajit</au><au>Chauhan, Radha</au><au>Paul, Geetha</au><au>Kumar, Janesh</au><au>Philip, Ninan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>200</spage><epage>200</epage><pages>200-200</pages><artnum>200</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation. George, Assaiya et al. develop a deep learning tool, CASSPER, that automates the detection of protein particles in transmission microscope images. This algorithm uses semantic segmentation and visually prepared training samples to capture the differences in the transmission intensities of microscope images, enabling automation of data processing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33589717</pmid><doi>10.1038/s42003-021-01721-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0767-3788</orcidid><orcidid>https://orcid.org/0000-0003-1632-1637</orcidid><orcidid>https://orcid.org/0000-0003-3605-2331</orcidid><orcidid>https://orcid.org/0000-0002-0058-8217</orcidid><orcidid>https://orcid.org/0000-0003-3001-4692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2021-02, Vol.4 (1), p.200-200, Article 200
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ac44a665905d4502a0e70a0390fc2cd0
source PubMed Central (Open Access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 101/28
631/114/1314
631/1647/2258/1258/1259
Algorithms
Animals
Automation
Biology
Biomedical and Life Sciences
Cryoelectron Microscopy
Data processing
Deep Learning
Electron microscopy
Humans
Image processing
Image Processing, Computer-Assisted
Impurities
Life Sciences
Macromolecules
Micrography
Microscopy
Models, Molecular
Protein Conformation
Proteins
Proteins - ultrastructure
Segmentation
Semantics
Single Molecule Imaging
title CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CASSPER%20is%20a%20semantic%20segmentation-based%20particle%20picking%20algorithm%20for%20single-particle%20cryo-electron%20microscopy&rft.jtitle=Communications%20biology&rft.au=George,%20Blesson&rft.date=2021-02-15&rft.volume=4&rft.issue=1&rft.spage=200&rft.epage=200&rft.pages=200-200&rft.artnum=200&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-01721-1&rft_dat=%3Cproquest_doaj_%3E2489438692%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3ca921cfb416189dc5bdea45be59a2a3a07faa046a17b3bbffd3e00f84d7c6493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489438692&rft_id=info:pmid/33589717&rfr_iscdi=true