Loading…
Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers
Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate...
Saved in:
Published in: | Responsive materials (Online) 2024-08, Vol.2 (3), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1828-8d0c02fa680119056279bb238007a4f6e9e454736208f037dfcc5ea41bb354dc3 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | |
container_title | Responsive materials (Online) |
container_volume | 2 |
creator | Rui, Guanchun Allahyarov, Elshad Zhu, Zhiwen Huang, Yanfei Wongwirat, Thumawadee Zou, Qin Taylor, Philip L. Zhu, Lei |
description | Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficient d31 is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAF in PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.
Different contributions to piezoelectric coefficients from crystals, oriented and isotropic amorphous fractions (OAF and IAF) under an applied stress (d3j) or strain (e3j). |
doi_str_mv | 10.1002/rpm.20240002 |
format | article |
fullrecord | <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac52a1c46ff246cf80b36ca4e7c73001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac52a1c46ff246cf80b36ca4e7c73001</doaj_id><sourcerecordid>RPM238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1828-8d0c02fa680119056279bb238007a4f6e9e454736208f037dfcc5ea41bb354dc3</originalsourceid><addsrcrecordid>eNp9kdtKxDAQhosouKh3PkAewNXJoWnWO1nWAyiK6HVI04lmaZuSVGR9AV_b6OrqlVeZ_Hx8w_AXxSGFYwrATuLQHTNgAvJnq5gwxcVUzaTc_jPvFgcpLTPBGWWUlpPiff5s2hb7J0zE9A0JwxDi-NL70efE92Tw-BawRTtGb8kQ2lWHMZ2ShXM5I8GRED32IzbEdCEOz-ElEReNHX3oPwUOY_wVJOy8jas05q2-x41wv9hxpk148P3uFY_ni4f55fT69uJqfnY9tVQxNVUNWGDOSAWUzqCUrJrVNeMKoDLCSZyhKEXFJQPlgFeNs7ZEI2hd81I0lu8VV2tvE8xSD9F3Jq50MF5_BSE-aRNHb1vUxpbMUCukc0xI6xTUXFojsLIVB6DZdbR22RhSiug2Pgr6sxOdO9E_nWQc1virb3H1L6vv727yUfwDz7KRiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Rui, Guanchun ; Allahyarov, Elshad ; Zhu, Zhiwen ; Huang, Yanfei ; Wongwirat, Thumawadee ; Zou, Qin ; Taylor, Philip L. ; Zhu, Lei</creator><creatorcontrib>Rui, Guanchun ; Allahyarov, Elshad ; Zhu, Zhiwen ; Huang, Yanfei ; Wongwirat, Thumawadee ; Zou, Qin ; Taylor, Philip L. ; Zhu, Lei</creatorcontrib><description>Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficient d31 is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAF in PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.
Different contributions to piezoelectric coefficients from crystals, oriented and isotropic amorphous fractions (OAF and IAF) under an applied stress (d3j) or strain (e3j).</description><identifier>ISSN: 2834-8966</identifier><identifier>EISSN: 2834-8966</identifier><identifier>DOI: 10.1002/rpm.20240002</identifier><language>eng</language><publisher>Wiley</publisher><subject>electrostriction ; ferroelectric polymers ; oriented amorphous fraction ; piezoelectricity ; poly(vinylidene fluoride)</subject><ispartof>Responsive materials (Online), 2024-08, Vol.2 (3), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1828-8d0c02fa680119056279bb238007a4f6e9e454736208f037dfcc5ea41bb354dc3</cites><orcidid>0000-0002-4097-2205 ; 0000-0001-6570-9123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frpm.20240002$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frpm.20240002$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Allahyarov, Elshad</creatorcontrib><creatorcontrib>Zhu, Zhiwen</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Wongwirat, Thumawadee</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Taylor, Philip L.</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><title>Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers</title><title>Responsive materials (Online)</title><description>Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficient d31 is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAF in PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.
Different contributions to piezoelectric coefficients from crystals, oriented and isotropic amorphous fractions (OAF and IAF) under an applied stress (d3j) or strain (e3j).</description><subject>electrostriction</subject><subject>ferroelectric polymers</subject><subject>oriented amorphous fraction</subject><subject>piezoelectricity</subject><subject>poly(vinylidene fluoride)</subject><issn>2834-8966</issn><issn>2834-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kdtKxDAQhosouKh3PkAewNXJoWnWO1nWAyiK6HVI04lmaZuSVGR9AV_b6OrqlVeZ_Hx8w_AXxSGFYwrATuLQHTNgAvJnq5gwxcVUzaTc_jPvFgcpLTPBGWWUlpPiff5s2hb7J0zE9A0JwxDi-NL70efE92Tw-BawRTtGb8kQ2lWHMZ2ShXM5I8GRED32IzbEdCEOz-ElEReNHX3oPwUOY_wVJOy8jas05q2-x41wv9hxpk148P3uFY_ni4f55fT69uJqfnY9tVQxNVUNWGDOSAWUzqCUrJrVNeMKoDLCSZyhKEXFJQPlgFeNs7ZEI2hd81I0lu8VV2tvE8xSD9F3Jq50MF5_BSE-aRNHb1vUxpbMUCukc0xI6xTUXFojsLIVB6DZdbR22RhSiug2Pgr6sxOdO9E_nWQc1virb3H1L6vv727yUfwDz7KRiw</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Rui, Guanchun</creator><creator>Allahyarov, Elshad</creator><creator>Zhu, Zhiwen</creator><creator>Huang, Yanfei</creator><creator>Wongwirat, Thumawadee</creator><creator>Zou, Qin</creator><creator>Taylor, Philip L.</creator><creator>Zhu, Lei</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4097-2205</orcidid><orcidid>https://orcid.org/0000-0001-6570-9123</orcidid></search><sort><creationdate>202408</creationdate><title>Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers</title><author>Rui, Guanchun ; Allahyarov, Elshad ; Zhu, Zhiwen ; Huang, Yanfei ; Wongwirat, Thumawadee ; Zou, Qin ; Taylor, Philip L. ; Zhu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1828-8d0c02fa680119056279bb238007a4f6e9e454736208f037dfcc5ea41bb354dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrostriction</topic><topic>ferroelectric polymers</topic><topic>oriented amorphous fraction</topic><topic>piezoelectricity</topic><topic>poly(vinylidene fluoride)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Allahyarov, Elshad</creatorcontrib><creatorcontrib>Zhu, Zhiwen</creatorcontrib><creatorcontrib>Huang, Yanfei</creatorcontrib><creatorcontrib>Wongwirat, Thumawadee</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Taylor, Philip L.</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Responsive materials (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui, Guanchun</au><au>Allahyarov, Elshad</au><au>Zhu, Zhiwen</au><au>Huang, Yanfei</au><au>Wongwirat, Thumawadee</au><au>Zou, Qin</au><au>Taylor, Philip L.</au><au>Zhu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers</atitle><jtitle>Responsive materials (Online)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>2</volume><issue>3</issue><epage>n/a</epage><issn>2834-8966</issn><eissn>2834-8966</eissn><abstract>Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficient d31 is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAF in PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.
Different contributions to piezoelectric coefficients from crystals, oriented and isotropic amorphous fractions (OAF and IAF) under an applied stress (d3j) or strain (e3j).</abstract><pub>Wiley</pub><doi>10.1002/rpm.20240002</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4097-2205</orcidid><orcidid>https://orcid.org/0000-0001-6570-9123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2834-8966 |
ispartof | Responsive materials (Online), 2024-08, Vol.2 (3), p.n/a |
issn | 2834-8966 2834-8966 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ac52a1c46ff246cf80b36ca4e7c73001 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access |
subjects | electrostriction ferroelectric polymers oriented amorphous fraction piezoelectricity poly(vinylidene fluoride) |
title | Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20and%20opportunities%20in%20piezoelectric%20polymers:%20Effect%20of%20oriented%20amorphous%20fraction%20in%20ferroelectric%20semicrystalline%20polymers&rft.jtitle=Responsive%20materials%20(Online)&rft.au=Rui,%20Guanchun&rft.date=2024-08&rft.volume=2&rft.issue=3&rft.epage=n/a&rft.issn=2834-8966&rft.eissn=2834-8966&rft_id=info:doi/10.1002/rpm.20240002&rft_dat=%3Cwiley_doaj_%3ERPM238%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1828-8d0c02fa680119056279bb238007a4f6e9e454736208f037dfcc5ea41bb354dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |