Loading…
Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance
A statistical model is developed in order to simulate the melt composition in electric arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and (3) element distribution factors. The tramp element Cu and alloying element Cr are taken into account. The model e...
Saved in:
Published in: | Metals (Basel ) 2021, Vol.11 (6), p.892 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-1545b47ca75ae72005721403ca9b3f5e416ac2d6ff7c20a905c9c734b5eb3d193 |
container_end_page | |
container_issue | 6 |
container_start_page | 892 |
container_title | Metals (Basel ) |
container_volume | 11 |
creator | Arzpeyma, Niloofar Alam, Moudud Gyllenram, Rutger Jönsson, Pär G. |
description | A statistical model is developed in order to simulate the melt composition in electric arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and (3) element distribution factors. The tramp element Cu and alloying element Cr are taken into account. The model enables simulations of a charge program as well as backwards estimations of the element concentrations and their variance in scrap. In the backwards calculation, the maximum likelihood method is solved by considering three cases corresponding to the involved uncertainties. It is shown that the model can estimate standard deviations for elements so that the real values lie within the estimated 95% confidence interval. Moreover, the results of the model application in each target product show that the estimated scrap composition results in a melt composition, which is in good agreement with the measured one. The model can be applied to increase our understanding of scrap chemical composition and lower the charged material cost and carbon footprint of the products. |
doi_str_mv | 10.3390/met11060892 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac8207b2502f44028e2f25a20e1ff250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac8207b2502f44028e2f25a20e1ff250</doaj_id><sourcerecordid>2544897534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1545b47ca75ae72005721403ca9b3f5e416ac2d6ff7c20a905c9c734b5eb3d193</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEEtW2J76AJY4oMP4Xr4-rdltWKqISLVfLcSbUS2IvtrOoJ756s10E5cRopHkavfkdnqaq3lB4z7mGDyMWSqGBpWYvqhMGStZCAX35TL-uznLewlxL1oDWJ9WvT7HDgVzgHoe4GzEUUiL5UqbugdwFh6lYH4rHTHwg6wFdSd6RVXLkckrBOiQ3gw0lH6424y7FPZLbe_SJrF0McZzNNnRkHfY-xXDg24HcYOpjGu3MP61e9XbIePZ7Lqq7y_Xt-cf6-vPV5nx1XTuum1JTKWQrlLNKWlQMQCpGBXBndct7iYI21rGu6XvlGFgN0mmnuGgltryjmi-qzZHbRbs1u-RHmx5MtN48LWL6Zmwq3g1orFvOgbVMAuuFALZE1jNpGSDtZwEzqz6y8k_cTe0_tAv_dfVE-17uDdMaGJ397_7v7ybDFZ97Ub09uucwf0yYi9nGQ9RDNkwKsdRKcvGX6VLMOWH_h0rBHN7BPHsH_gjnF6gj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544897534</pqid></control><display><type>article</type><title>Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance</title><source>ProQuest - Publicly Available Content Database</source><creator>Arzpeyma, Niloofar ; Alam, Moudud ; Gyllenram, Rutger ; Jönsson, Pär G.</creator><creatorcontrib>Arzpeyma, Niloofar ; Alam, Moudud ; Gyllenram, Rutger ; Jönsson, Pär G.</creatorcontrib><description>A statistical model is developed in order to simulate the melt composition in electric arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and (3) element distribution factors. The tramp element Cu and alloying element Cr are taken into account. The model enables simulations of a charge program as well as backwards estimations of the element concentrations and their variance in scrap. In the backwards calculation, the maximum likelihood method is solved by considering three cases corresponding to the involved uncertainties. It is shown that the model can estimate standard deviations for elements so that the real values lie within the estimated 95% confidence interval. Moreover, the results of the model application in each target product show that the estimated scrap composition results in a melt composition, which is in good agreement with the measured one. The model can be applied to increase our understanding of scrap chemical composition and lower the charged material cost and carbon footprint of the products.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11060892</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alloying elements ; Carbon footprint ; Charge simulation ; Chemical composition ; Chromium ; Confidence intervals ; Copper ; Data processing ; EAF ; Economic models ; Electric arc furnaces ; Maximum likelihood ; Maximum likelihood method ; Optimization ; Power plants ; Production planning ; Scrap ; Simulation ; Standard deviation ; Statistical analysis ; Statistical models ; Stochastic models ; Tramp element ; Tramp elements ; Uncertainty</subject><ispartof>Metals (Basel ), 2021, Vol.11 (6), p.892</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c396t-1545b47ca75ae72005721403ca9b3f5e416ac2d6ff7c20a905c9c734b5eb3d193</cites><orcidid>0000-0001-9775-0382 ; 0000-0002-3183-3756 ; 0000-0003-1360-5765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544897534/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544897534?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:du-37337$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299021$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Arzpeyma, Niloofar</creatorcontrib><creatorcontrib>Alam, Moudud</creatorcontrib><creatorcontrib>Gyllenram, Rutger</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><title>Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance</title><title>Metals (Basel )</title><description>A statistical model is developed in order to simulate the melt composition in electric arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and (3) element distribution factors. The tramp element Cu and alloying element Cr are taken into account. The model enables simulations of a charge program as well as backwards estimations of the element concentrations and their variance in scrap. In the backwards calculation, the maximum likelihood method is solved by considering three cases corresponding to the involved uncertainties. It is shown that the model can estimate standard deviations for elements so that the real values lie within the estimated 95% confidence interval. Moreover, the results of the model application in each target product show that the estimated scrap composition results in a melt composition, which is in good agreement with the measured one. The model can be applied to increase our understanding of scrap chemical composition and lower the charged material cost and carbon footprint of the products.</description><subject>Accuracy</subject><subject>Alloying elements</subject><subject>Carbon footprint</subject><subject>Charge simulation</subject><subject>Chemical composition</subject><subject>Chromium</subject><subject>Confidence intervals</subject><subject>Copper</subject><subject>Data processing</subject><subject>EAF</subject><subject>Economic models</subject><subject>Electric arc furnaces</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood method</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Production planning</subject><subject>Scrap</subject><subject>Simulation</subject><subject>Standard deviation</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stochastic models</subject><subject>Tramp element</subject><subject>Tramp elements</subject><subject>Uncertainty</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk9v1DAQxSMEEtW2J76AJY4oMP4Xr4-rdltWKqISLVfLcSbUS2IvtrOoJ756s10E5cRopHkavfkdnqaq3lB4z7mGDyMWSqGBpWYvqhMGStZCAX35TL-uznLewlxL1oDWJ9WvT7HDgVzgHoe4GzEUUiL5UqbugdwFh6lYH4rHTHwg6wFdSd6RVXLkckrBOiQ3gw0lH6424y7FPZLbe_SJrF0McZzNNnRkHfY-xXDg24HcYOpjGu3MP61e9XbIePZ7Lqq7y_Xt-cf6-vPV5nx1XTuum1JTKWQrlLNKWlQMQCpGBXBndct7iYI21rGu6XvlGFgN0mmnuGgltryjmi-qzZHbRbs1u-RHmx5MtN48LWL6Zmwq3g1orFvOgbVMAuuFALZE1jNpGSDtZwEzqz6y8k_cTe0_tAv_dfVE-17uDdMaGJ397_7v7ybDFZ97Ub09uucwf0yYi9nGQ9RDNkwKsdRKcvGX6VLMOWH_h0rBHN7BPHsH_gjnF6gj</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Arzpeyma, Niloofar</creator><creator>Alam, Moudud</creator><creator>Gyllenram, Rutger</creator><creator>Jönsson, Pär G.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>D8V</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9775-0382</orcidid><orcidid>https://orcid.org/0000-0002-3183-3756</orcidid><orcidid>https://orcid.org/0000-0003-1360-5765</orcidid></search><sort><creationdate>2021</creationdate><title>Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance</title><author>Arzpeyma, Niloofar ; Alam, Moudud ; Gyllenram, Rutger ; Jönsson, Pär G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1545b47ca75ae72005721403ca9b3f5e416ac2d6ff7c20a905c9c734b5eb3d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Alloying elements</topic><topic>Carbon footprint</topic><topic>Charge simulation</topic><topic>Chemical composition</topic><topic>Chromium</topic><topic>Confidence intervals</topic><topic>Copper</topic><topic>Data processing</topic><topic>EAF</topic><topic>Economic models</topic><topic>Electric arc furnaces</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood method</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Production planning</topic><topic>Scrap</topic><topic>Simulation</topic><topic>Standard deviation</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stochastic models</topic><topic>Tramp element</topic><topic>Tramp elements</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arzpeyma, Niloofar</creatorcontrib><creatorcontrib>Alam, Moudud</creatorcontrib><creatorcontrib>Gyllenram, Rutger</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arzpeyma, Niloofar</au><au>Alam, Moudud</au><au>Gyllenram, Rutger</au><au>Jönsson, Pär G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance</atitle><jtitle>Metals (Basel )</jtitle><date>2021</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>892</spage><pages>892-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>A statistical model is developed in order to simulate the melt composition in electric arc furnaces (EAFs) with respect to uncertainties in (1) scrap composition, (2) scrap weighing and (3) element distribution factors. The tramp element Cu and alloying element Cr are taken into account. The model enables simulations of a charge program as well as backwards estimations of the element concentrations and their variance in scrap. In the backwards calculation, the maximum likelihood method is solved by considering three cases corresponding to the involved uncertainties. It is shown that the model can estimate standard deviations for elements so that the real values lie within the estimated 95% confidence interval. Moreover, the results of the model application in each target product show that the estimated scrap composition results in a melt composition, which is in good agreement with the measured one. The model can be applied to increase our understanding of scrap chemical composition and lower the charged material cost and carbon footprint of the products.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11060892</doi><orcidid>https://orcid.org/0000-0001-9775-0382</orcidid><orcidid>https://orcid.org/0000-0002-3183-3756</orcidid><orcidid>https://orcid.org/0000-0003-1360-5765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2021, Vol.11 (6), p.892 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ac8207b2502f44028e2f25a20e1ff250 |
source | ProQuest - Publicly Available Content Database |
subjects | Accuracy Alloying elements Carbon footprint Charge simulation Chemical composition Chromium Confidence intervals Copper Data processing EAF Economic models Electric arc furnaces Maximum likelihood Maximum likelihood method Optimization Power plants Production planning Scrap Simulation Standard deviation Statistical analysis Statistical models Stochastic models Tramp element Tramp elements Uncertainty |
title | Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Development%20to%20Study%20Uncertainties%20in%20Electric%20Arc%20Furnace%20Plants%20to%20Improve%20Their%20Economic%20and%20Environmental%20Performance&rft.jtitle=Metals%20(Basel%20)&rft.au=Arzpeyma,%20Niloofar&rft.date=2021&rft.volume=11&rft.issue=6&rft.spage=892&rft.pages=892-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11060892&rft_dat=%3Cproquest_doaj_%3E2544897534%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-1545b47ca75ae72005721403ca9b3f5e416ac2d6ff7c20a905c9c734b5eb3d193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544897534&rft_id=info:pmid/&rfr_iscdi=true |