Loading…

The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen...

Full description

Saved in:
Bibliographic Details
Main Authors: Sabri, S N, Abidin, C Z A, Fahmi, Kow, SH, Razali, N A
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.
ISSN:2555-0403
2267-1242
DOI:10.1051/e3sconf/20183402039