Loading…

Short-Term Exposure Effects of the Environmental Endocrine Disruptor Benzo(a)Pyrene on Thyroid Axis Function in Zebrafish

Benzo(a)Pyrene (BaP) is one of the most widespread polycyclic aromatic hydrocarbons (PAHs) with endocrine disrupting properties and carcinogenic effects. In the present study, we tested the effect of BaP on thyroid development and function, using zebrafish as a model system. Zebrafish embryos were t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-05, Vol.23 (10), p.5833
Main Authors: Rurale, Giuditta, Gentile, Ilaria, Carbonero, Camilla, Persani, Luca, Marelli, Federica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzo(a)Pyrene (BaP) is one of the most widespread polycyclic aromatic hydrocarbons (PAHs) with endocrine disrupting properties and carcinogenic effects. In the present study, we tested the effect of BaP on thyroid development and function, using zebrafish as a model system. Zebrafish embryos were treated with 50 nM BaP from 2.5 to 72 h post fertilization (hpf) and compared to 1.2% DMSO controls. The expression profiles of markers of thyroid primordium specification, thyroid hormone (TH) synthesis, hypothalamus-pituitary-thyroid (HPT) axis, TH transport and metabolism, and TH action were analyzed in pools of treated and control embryos at different developmental stages. BaP treatment did not affect early markers of thyroid differentiation but resulted in a significant decrease of markers of TH synthesis ( and ) likely secondary to defective expression of the central stimulatory hormones of thyroid axis ( , ) and of TH metabolism ( ). Consequently, immunofluorescence of BaP treated larvae showed a low number of follicles immunoreactive to T4. In conclusion, our results revealed that the short-term exposure to BaP significantly affects thyroid function in zebrafish, but the primary toxic effects would be exerted at the hypothalamic-pituitary level thus creating a model of central hypothyroidism.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23105833