Loading…
Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis
Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients' lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety...
Saved in:
Published in: | Chinese medicine 2022-05, Vol.17 (1), p.57-57, Article 57 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 57 |
container_title | Chinese medicine |
container_volume | 17 |
creator | Qi, Wenchuan Li, Xiang Ren, Yanrong Liu, Xueying Fu, Hongjuan Wang, Xiao Li, Xiao Xiong, Jian Zheng, Qianhua Cai, Dingjun Liang, Fanrong |
description | Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients' lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety of regulatory functions in myocardial fibrosis, but whether electroacupuncture can inhibit myocardial fibrosis by regulating lncRNA has rarely been reported.
In this study, we constructed myocardial fibrosis rat models using isoproterenol (ISO) and treated rats with electroacupuncture at PC6 point and non-point as control. Hematoxylin-eosin, Masson and Sirius Red staining were performed to assess the pathological changes and collagen deposition. The expression of fibrosis-related markers in rat myocardial tissue were detected by RT-qPCR and Western blot. Miat, an important long non-coding RNA, was selected to study the regulation of myocardial fibrosis by electroacupuncture at the transcriptional and post-transcriptional levels. In post-transcriptional level, we explored the myocardial fibrosis regulation effect of Miat on the sponge effect of miR-133a-3p. At the transcriptional level, we studied the formation of heterodimer PPARG-RXRA complex and promotion of the TGF-β1 transcription.
Miat was overexpressed by ISO injection in rats. We found that Miat can play a dual regulatory role in myocardial fibrosis. Miat can sponge miR-133a-3p in an Ago2-dependent manner, reduce the binding of miR-133a-3p target to the 3'UTR region of CTGF mRNA and improve the protein expression level of CTGF. In addition, it can also directly bind with PPARG protein, inhibit the formation of heterodimer PPARG-RXRA complex and then promote the transcription of TGF-β1. Electroacupuncture at PC6 point, but not at non-points, can reduce the expression of Miat, thus inhibiting the expression of CTGF and TGF-β1 and inhibiting myocardial fibrosis.
We revealed that electroacupuncture at PC6 point can inhibit the process of myocardial fibrosis by reducing the expression of lncRNA Miat, which is a potential therapeutic method for myocardial fibrosis. |
doi_str_mv | 10.1186/s13020-022-00615-6 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac94db535a3946d1a86f430ebdd83a85</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706434215</galeid><doaj_id>oai_doaj_org_article_ac94db535a3946d1a86f430ebdd83a85</doaj_id><sourcerecordid>A706434215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93</originalsourceid><addsrcrecordid>eNptUl2L1DAULaK46-of8EEKgvjSNWk-2r4Iw_q1sCqIPofb9KaTIdOMSbqy_950Z11nRPKQy805J8m5pyieU3JOaSvfRMpITSpS1xUhkopKPihOacO7qhVcPjyoT4onMW4IEUyw9nFxwoRo2lqQ0yK987-mgOPsIFk_ld6UbtLfvqzKzxZSqf2Ugu3nhLFMvkxrLHfBJ9TJXmOJxuRq4aDLRfCg59086TQHLGEEO8VUbm-8hjBYcKWxffDRxqfFIwMu4rO7_az48eH994tP1dXXj5cXq6tKC9LJCtqhHxg1gje9RGS6k0RoIpF3huhGEODABekNRdlSIrtBM420rRmRpsGOnRWXe93Bw0btgt1CuFEerLpt-DAqCMlqhwp0x4c--wOs43Kg0ErDGcF-GFoGrchab_dau7nf4qAxGwPuSPT4ZLJrNfpr1VFaC1Fngdd3AsH_nDEmtbVRo3MwoZ-jqqUUQhLWyQx9-Q904-cwZasWVJ40EU33FzVC_oCdjM_36kVUrRoiOeM1Xd59_h9UXgNubR4vGpv7R4RXB4Q1gkvr6N28xCMeA-s9UOehxoDm3gxK1BJQtQ-oygFVtwFVy9deHNp4T_mTSPYbVUbg1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666150579</pqid></control><display><type>article</type><title>Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Qi, Wenchuan ; Li, Xiang ; Ren, Yanrong ; Liu, Xueying ; Fu, Hongjuan ; Wang, Xiao ; Li, Xiao ; Xiong, Jian ; Zheng, Qianhua ; Cai, Dingjun ; Liang, Fanrong</creator><creatorcontrib>Qi, Wenchuan ; Li, Xiang ; Ren, Yanrong ; Liu, Xueying ; Fu, Hongjuan ; Wang, Xiao ; Li, Xiao ; Xiong, Jian ; Zheng, Qianhua ; Cai, Dingjun ; Liang, Fanrong</creatorcontrib><description>Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients' lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety of regulatory functions in myocardial fibrosis, but whether electroacupuncture can inhibit myocardial fibrosis by regulating lncRNA has rarely been reported.
In this study, we constructed myocardial fibrosis rat models using isoproterenol (ISO) and treated rats with electroacupuncture at PC6 point and non-point as control. Hematoxylin-eosin, Masson and Sirius Red staining were performed to assess the pathological changes and collagen deposition. The expression of fibrosis-related markers in rat myocardial tissue were detected by RT-qPCR and Western blot. Miat, an important long non-coding RNA, was selected to study the regulation of myocardial fibrosis by electroacupuncture at the transcriptional and post-transcriptional levels. In post-transcriptional level, we explored the myocardial fibrosis regulation effect of Miat on the sponge effect of miR-133a-3p. At the transcriptional level, we studied the formation of heterodimer PPARG-RXRA complex and promotion of the TGF-β1 transcription.
Miat was overexpressed by ISO injection in rats. We found that Miat can play a dual regulatory role in myocardial fibrosis. Miat can sponge miR-133a-3p in an Ago2-dependent manner, reduce the binding of miR-133a-3p target to the 3'UTR region of CTGF mRNA and improve the protein expression level of CTGF. In addition, it can also directly bind with PPARG protein, inhibit the formation of heterodimer PPARG-RXRA complex and then promote the transcription of TGF-β1. Electroacupuncture at PC6 point, but not at non-points, can reduce the expression of Miat, thus inhibiting the expression of CTGF and TGF-β1 and inhibiting myocardial fibrosis.
We revealed that electroacupuncture at PC6 point can inhibit the process of myocardial fibrosis by reducing the expression of lncRNA Miat, which is a potential therapeutic method for myocardial fibrosis.</description><identifier>ISSN: 1749-8546</identifier><identifier>EISSN: 1749-8546</identifier><identifier>DOI: 10.1186/s13020-022-00615-6</identifier><identifier>PMID: 35578250</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acupuncture ; Animal models ; Argonaute 2 protein ; Arrhythmia ; Collagen ; Connective tissue growth factor ; Coronary vessels ; CTGF ; Diabetic retinopathy ; Electroacupuncture ; Extracellular matrix ; Fibrosis ; Gene expression ; Genetic transcription ; Growth factors ; Heart attacks ; Heart failure ; Heterodimer PPARG–RXRA ; Hypertension ; Ischemia ; Laboratory animals ; lncRNA Miat ; Medical research ; Myocardial fibrosis ; Myocardium ; Non-coding RNA ; Peptides ; Peroxisome proliferator-activated receptors ; Physiological aspects ; Post-transcription ; Protein binding ; Proteins ; Retinoid X receptor α ; RNA ; Rodents ; Scientific equipment and supplies industry ; TGF-β1 ; Transforming growth factor-b1 ; Transforming growth factors</subject><ispartof>Chinese medicine, 2022-05, Vol.17 (1), p.57-57, Article 57</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93</citedby><cites>FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93</cites><orcidid>0000-0001-8518-9268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112552/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2666150579?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35578250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Wenchuan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Ren, Yanrong</creatorcontrib><creatorcontrib>Liu, Xueying</creatorcontrib><creatorcontrib>Fu, Hongjuan</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Zheng, Qianhua</creatorcontrib><creatorcontrib>Cai, Dingjun</creatorcontrib><creatorcontrib>Liang, Fanrong</creatorcontrib><title>Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis</title><title>Chinese medicine</title><addtitle>Chin Med</addtitle><description>Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients' lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety of regulatory functions in myocardial fibrosis, but whether electroacupuncture can inhibit myocardial fibrosis by regulating lncRNA has rarely been reported.
In this study, we constructed myocardial fibrosis rat models using isoproterenol (ISO) and treated rats with electroacupuncture at PC6 point and non-point as control. Hematoxylin-eosin, Masson and Sirius Red staining were performed to assess the pathological changes and collagen deposition. The expression of fibrosis-related markers in rat myocardial tissue were detected by RT-qPCR and Western blot. Miat, an important long non-coding RNA, was selected to study the regulation of myocardial fibrosis by electroacupuncture at the transcriptional and post-transcriptional levels. In post-transcriptional level, we explored the myocardial fibrosis regulation effect of Miat on the sponge effect of miR-133a-3p. At the transcriptional level, we studied the formation of heterodimer PPARG-RXRA complex and promotion of the TGF-β1 transcription.
Miat was overexpressed by ISO injection in rats. We found that Miat can play a dual regulatory role in myocardial fibrosis. Miat can sponge miR-133a-3p in an Ago2-dependent manner, reduce the binding of miR-133a-3p target to the 3'UTR region of CTGF mRNA and improve the protein expression level of CTGF. In addition, it can also directly bind with PPARG protein, inhibit the formation of heterodimer PPARG-RXRA complex and then promote the transcription of TGF-β1. Electroacupuncture at PC6 point, but not at non-points, can reduce the expression of Miat, thus inhibiting the expression of CTGF and TGF-β1 and inhibiting myocardial fibrosis.
We revealed that electroacupuncture at PC6 point can inhibit the process of myocardial fibrosis by reducing the expression of lncRNA Miat, which is a potential therapeutic method for myocardial fibrosis.</description><subject>Acupuncture</subject><subject>Animal models</subject><subject>Argonaute 2 protein</subject><subject>Arrhythmia</subject><subject>Collagen</subject><subject>Connective tissue growth factor</subject><subject>Coronary vessels</subject><subject>CTGF</subject><subject>Diabetic retinopathy</subject><subject>Electroacupuncture</subject><subject>Extracellular matrix</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Growth factors</subject><subject>Heart attacks</subject><subject>Heart failure</subject><subject>Heterodimer PPARG–RXRA</subject><subject>Hypertension</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>lncRNA Miat</subject><subject>Medical research</subject><subject>Myocardial fibrosis</subject><subject>Myocardium</subject><subject>Non-coding RNA</subject><subject>Peptides</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Physiological aspects</subject><subject>Post-transcription</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Retinoid X receptor α</subject><subject>RNA</subject><subject>Rodents</subject><subject>Scientific equipment and supplies industry</subject><subject>TGF-β1</subject><subject>Transforming growth factor-b1</subject><subject>Transforming growth factors</subject><issn>1749-8546</issn><issn>1749-8546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl2L1DAULaK46-of8EEKgvjSNWk-2r4Iw_q1sCqIPofb9KaTIdOMSbqy_950Z11nRPKQy805J8m5pyieU3JOaSvfRMpITSpS1xUhkopKPihOacO7qhVcPjyoT4onMW4IEUyw9nFxwoRo2lqQ0yK987-mgOPsIFk_ld6UbtLfvqzKzxZSqf2Ugu3nhLFMvkxrLHfBJ9TJXmOJxuRq4aDLRfCg59086TQHLGEEO8VUbm-8hjBYcKWxffDRxqfFIwMu4rO7_az48eH994tP1dXXj5cXq6tKC9LJCtqhHxg1gje9RGS6k0RoIpF3huhGEODABekNRdlSIrtBM420rRmRpsGOnRWXe93Bw0btgt1CuFEerLpt-DAqCMlqhwp0x4c--wOs43Kg0ErDGcF-GFoGrchab_dau7nf4qAxGwPuSPT4ZLJrNfpr1VFaC1Fngdd3AsH_nDEmtbVRo3MwoZ-jqqUUQhLWyQx9-Q904-cwZasWVJ40EU33FzVC_oCdjM_36kVUrRoiOeM1Xd59_h9UXgNubR4vGpv7R4RXB4Q1gkvr6N28xCMeA-s9UOehxoDm3gxK1BJQtQ-oygFVtwFVy9deHNp4T_mTSPYbVUbg1Q</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Qi, Wenchuan</creator><creator>Li, Xiang</creator><creator>Ren, Yanrong</creator><creator>Liu, Xueying</creator><creator>Fu, Hongjuan</creator><creator>Wang, Xiao</creator><creator>Li, Xiao</creator><creator>Xiong, Jian</creator><creator>Zheng, Qianhua</creator><creator>Cai, Dingjun</creator><creator>Liang, Fanrong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8518-9268</orcidid></search><sort><creationdate>20220517</creationdate><title>Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis</title><author>Qi, Wenchuan ; Li, Xiang ; Ren, Yanrong ; Liu, Xueying ; Fu, Hongjuan ; Wang, Xiao ; Li, Xiao ; Xiong, Jian ; Zheng, Qianhua ; Cai, Dingjun ; Liang, Fanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acupuncture</topic><topic>Animal models</topic><topic>Argonaute 2 protein</topic><topic>Arrhythmia</topic><topic>Collagen</topic><topic>Connective tissue growth factor</topic><topic>Coronary vessels</topic><topic>CTGF</topic><topic>Diabetic retinopathy</topic><topic>Electroacupuncture</topic><topic>Extracellular matrix</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Growth factors</topic><topic>Heart attacks</topic><topic>Heart failure</topic><topic>Heterodimer PPARG–RXRA</topic><topic>Hypertension</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>lncRNA Miat</topic><topic>Medical research</topic><topic>Myocardial fibrosis</topic><topic>Myocardium</topic><topic>Non-coding RNA</topic><topic>Peptides</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Physiological aspects</topic><topic>Post-transcription</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Retinoid X receptor α</topic><topic>RNA</topic><topic>Rodents</topic><topic>Scientific equipment and supplies industry</topic><topic>TGF-β1</topic><topic>Transforming growth factor-b1</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Wenchuan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Ren, Yanrong</creatorcontrib><creatorcontrib>Liu, Xueying</creatorcontrib><creatorcontrib>Fu, Hongjuan</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Zheng, Qianhua</creatorcontrib><creatorcontrib>Cai, Dingjun</creatorcontrib><creatorcontrib>Liang, Fanrong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chinese medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Wenchuan</au><au>Li, Xiang</au><au>Ren, Yanrong</au><au>Liu, Xueying</au><au>Fu, Hongjuan</au><au>Wang, Xiao</au><au>Li, Xiao</au><au>Xiong, Jian</au><au>Zheng, Qianhua</au><au>Cai, Dingjun</au><au>Liang, Fanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis</atitle><jtitle>Chinese medicine</jtitle><addtitle>Chin Med</addtitle><date>2022-05-17</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>57</spage><epage>57</epage><pages>57-57</pages><artnum>57</artnum><issn>1749-8546</issn><eissn>1749-8546</eissn><abstract>Myocardial fibrosis changes the structure of myocardium, leads to cardiac dysfunction and induces arrhythmia and cardiac ischemia, threatening patients' lives. Electroacupuncture at PC6 (Neiguan) was previously found to inhibit myocardial fibrosis. Long non-coding RNAs (lncRNAs) play a variety of regulatory functions in myocardial fibrosis, but whether electroacupuncture can inhibit myocardial fibrosis by regulating lncRNA has rarely been reported.
In this study, we constructed myocardial fibrosis rat models using isoproterenol (ISO) and treated rats with electroacupuncture at PC6 point and non-point as control. Hematoxylin-eosin, Masson and Sirius Red staining were performed to assess the pathological changes and collagen deposition. The expression of fibrosis-related markers in rat myocardial tissue were detected by RT-qPCR and Western blot. Miat, an important long non-coding RNA, was selected to study the regulation of myocardial fibrosis by electroacupuncture at the transcriptional and post-transcriptional levels. In post-transcriptional level, we explored the myocardial fibrosis regulation effect of Miat on the sponge effect of miR-133a-3p. At the transcriptional level, we studied the formation of heterodimer PPARG-RXRA complex and promotion of the TGF-β1 transcription.
Miat was overexpressed by ISO injection in rats. We found that Miat can play a dual regulatory role in myocardial fibrosis. Miat can sponge miR-133a-3p in an Ago2-dependent manner, reduce the binding of miR-133a-3p target to the 3'UTR region of CTGF mRNA and improve the protein expression level of CTGF. In addition, it can also directly bind with PPARG protein, inhibit the formation of heterodimer PPARG-RXRA complex and then promote the transcription of TGF-β1. Electroacupuncture at PC6 point, but not at non-points, can reduce the expression of Miat, thus inhibiting the expression of CTGF and TGF-β1 and inhibiting myocardial fibrosis.
We revealed that electroacupuncture at PC6 point can inhibit the process of myocardial fibrosis by reducing the expression of lncRNA Miat, which is a potential therapeutic method for myocardial fibrosis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35578250</pmid><doi>10.1186/s13020-022-00615-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8518-9268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-8546 |
ispartof | Chinese medicine, 2022-05, Vol.17 (1), p.57-57, Article 57 |
issn | 1749-8546 1749-8546 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ac94db535a3946d1a86f430ebdd83a85 |
source | Publicly Available Content Database; PubMed Central; EZB Electronic Journals Library |
subjects | Acupuncture Animal models Argonaute 2 protein Arrhythmia Collagen Connective tissue growth factor Coronary vessels CTGF Diabetic retinopathy Electroacupuncture Extracellular matrix Fibrosis Gene expression Genetic transcription Growth factors Heart attacks Heart failure Heterodimer PPARG–RXRA Hypertension Ischemia Laboratory animals lncRNA Miat Medical research Myocardial fibrosis Myocardium Non-coding RNA Peptides Peroxisome proliferator-activated receptors Physiological aspects Post-transcription Protein binding Proteins Retinoid X receptor α RNA Rodents Scientific equipment and supplies industry TGF-β1 Transforming growth factor-b1 Transforming growth factors |
title | Downregulation of lncRNA Miat contributes to the protective effect of electroacupuncture against myocardial fibrosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20lncRNA%20Miat%20contributes%20to%20the%20protective%20effect%20of%20electroacupuncture%20against%20myocardial%20fibrosis&rft.jtitle=Chinese%20medicine&rft.au=Qi,%20Wenchuan&rft.date=2022-05-17&rft.volume=17&rft.issue=1&rft.spage=57&rft.epage=57&rft.pages=57-57&rft.artnum=57&rft.issn=1749-8546&rft.eissn=1749-8546&rft_id=info:doi/10.1186/s13020-022-00615-6&rft_dat=%3Cgale_doaj_%3EA706434215%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5096-a8dbd31f547b6ee3c9605c06e49f0c750a4a450bf1e681069dc3ce182306f7e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666150579&rft_id=info:pmid/35578250&rft_galeid=A706434215&rfr_iscdi=true |