Loading…
Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts
The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin ca...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2023-03, Vol.28 (7), p.3105 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-b69e0d443fd2a1d2119e56c0189d700667630414830b69349d8349f597d931973 |
container_end_page | |
container_issue | 7 |
container_start_page | 3105 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 28 |
creator | Chen, Furong Wiriyarattanakul, Amphawan Xie, Wanting Shi, Liyi Rungrotmongkol, Thanyada Jia, Rongrong Maitarad, Phornphimon |
description | The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments. |
doi_str_mv | 10.3390/molecules28073105 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ac9b90ffb8764f8fa2d55cc18ecfd790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ac9b90ffb8764f8fa2d55cc18ecfd790</doaj_id><sourcerecordid>2800624863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-b69e0d443fd2a1d2119e56c0189d700667630414830b69349d8349f597d931973</originalsourceid><addsrcrecordid>eNplksFuEzEQhlcIJErhAbhZ4lIOgfF617s-oSoNUKmoNIWz5djjxJF3HWxvpdx4ByQekCfBbSpE4eKxPP__eTyeqnpJ4Q1jAt4OwaOePKa6h45RaB9VR7SpYcagEY__2j-tnqW0BahpQ9uj6ufVpMbsssruBsl1jpPOU8Rf338sCjDHoDc4uJTjnizRF1UY08btyMnV9WL5uhgm4zCRMJJPmJUvvtPBjaHEzyHuNvvoxkRsiCRvkCzv_MqTM0xuPZJgyfyyLmBTbi0ZMleFsU85Pa-eWOUTvriPx9XX94sv84-zi8sP5_PTi5luapZnKy4QTNMwa2pFTU2pwJZroL0wHQDnHS9vpk3PoEhZI0xfFtuKzghGRceOq_MD1wS1lbvoBhX3Mign7w5CXEsVs9MepdJiJcDaVd_xxvZW1aZttaY9ams6AYX17sDaTasBjcYxR-UfQB9mRreR63AjKYDg0N1Wc3JPiOHbhCnL0nqN3qsRw5Rk-VvgddNzVqSv_pFuwxRLb4uqE4J3jAEtKnpQ6RhSimj_VENB3s6N_G9u2G-9Lr1-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799673301</pqid></control><display><type>article</type><title>Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts</title><source>PubMed Central(OA)</source><source>ProQuest - Publicly Available Content Database</source><creator>Chen, Furong ; Wiriyarattanakul, Amphawan ; Xie, Wanting ; Shi, Liyi ; Rungrotmongkol, Thanyada ; Jia, Rongrong ; Maitarad, Phornphimon</creator><creatorcontrib>Chen, Furong ; Wiriyarattanakul, Amphawan ; Xie, Wanting ; Shi, Liyi ; Rungrotmongkol, Thanyada ; Jia, Rongrong ; Maitarad, Phornphimon</creatorcontrib><description>The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28073105</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Carbon dioxide ; catalyst design ; Catalysts ; Chemical reactions ; CO2RR ; Density functional theory ; Dependent variables ; DFT ; Electrochemistry ; Genetic algorithms ; Hydrogen ; Mathematical models ; metalloporphyrin ; Metals ; Nitrogen atoms ; Porphyrins ; QSER ; Reduction (metal working) ; Statistical analysis ; Transition metals</subject><ispartof>Molecules (Basel, Switzerland), 2023-03, Vol.28 (7), p.3105</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c423t-b69e0d443fd2a1d2119e56c0189d700667630414830b69349d8349f597d931973</cites><orcidid>0000-0001-8094-5351 ; 0000-0003-0035-0070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2799673301/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2799673301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Chen, Furong</creatorcontrib><creatorcontrib>Wiriyarattanakul, Amphawan</creatorcontrib><creatorcontrib>Xie, Wanting</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Rungrotmongkol, Thanyada</creatorcontrib><creatorcontrib>Jia, Rongrong</creatorcontrib><creatorcontrib>Maitarad, Phornphimon</creatorcontrib><title>Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts</title><title>Molecules (Basel, Switzerland)</title><description>The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>catalyst design</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>CO2RR</subject><subject>Density functional theory</subject><subject>Dependent variables</subject><subject>DFT</subject><subject>Electrochemistry</subject><subject>Genetic algorithms</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>metalloporphyrin</subject><subject>Metals</subject><subject>Nitrogen atoms</subject><subject>Porphyrins</subject><subject>QSER</subject><subject>Reduction (metal working)</subject><subject>Statistical analysis</subject><subject>Transition metals</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplksFuEzEQhlcIJErhAbhZ4lIOgfF617s-oSoNUKmoNIWz5djjxJF3HWxvpdx4ByQekCfBbSpE4eKxPP__eTyeqnpJ4Q1jAt4OwaOePKa6h45RaB9VR7SpYcagEY__2j-tnqW0BahpQ9uj6ufVpMbsssruBsl1jpPOU8Rf338sCjDHoDc4uJTjnizRF1UY08btyMnV9WL5uhgm4zCRMJJPmJUvvtPBjaHEzyHuNvvoxkRsiCRvkCzv_MqTM0xuPZJgyfyyLmBTbi0ZMleFsU85Pa-eWOUTvriPx9XX94sv84-zi8sP5_PTi5luapZnKy4QTNMwa2pFTU2pwJZroL0wHQDnHS9vpk3PoEhZI0xfFtuKzghGRceOq_MD1wS1lbvoBhX3Mign7w5CXEsVs9MepdJiJcDaVd_xxvZW1aZttaY9ams6AYX17sDaTasBjcYxR-UfQB9mRreR63AjKYDg0N1Wc3JPiOHbhCnL0nqN3qsRw5Rk-VvgddNzVqSv_pFuwxRLb4uqE4J3jAEtKnpQ6RhSimj_VENB3s6N_G9u2G-9Lr1-</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Chen, Furong</creator><creator>Wiriyarattanakul, Amphawan</creator><creator>Xie, Wanting</creator><creator>Shi, Liyi</creator><creator>Rungrotmongkol, Thanyada</creator><creator>Jia, Rongrong</creator><creator>Maitarad, Phornphimon</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8094-5351</orcidid><orcidid>https://orcid.org/0000-0003-0035-0070</orcidid></search><sort><creationdate>20230330</creationdate><title>Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts</title><author>Chen, Furong ; Wiriyarattanakul, Amphawan ; Xie, Wanting ; Shi, Liyi ; Rungrotmongkol, Thanyada ; Jia, Rongrong ; Maitarad, Phornphimon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-b69e0d443fd2a1d2119e56c0189d700667630414830b69349d8349f597d931973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>catalyst design</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>CO2RR</topic><topic>Density functional theory</topic><topic>Dependent variables</topic><topic>DFT</topic><topic>Electrochemistry</topic><topic>Genetic algorithms</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>metalloporphyrin</topic><topic>Metals</topic><topic>Nitrogen atoms</topic><topic>Porphyrins</topic><topic>QSER</topic><topic>Reduction (metal working)</topic><topic>Statistical analysis</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Furong</creatorcontrib><creatorcontrib>Wiriyarattanakul, Amphawan</creatorcontrib><creatorcontrib>Xie, Wanting</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Rungrotmongkol, Thanyada</creatorcontrib><creatorcontrib>Jia, Rongrong</creatorcontrib><creatorcontrib>Maitarad, Phornphimon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Furong</au><au>Wiriyarattanakul, Amphawan</au><au>Xie, Wanting</au><au>Shi, Liyi</au><au>Rungrotmongkol, Thanyada</au><au>Jia, Rongrong</au><au>Maitarad, Phornphimon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>28</volume><issue>7</issue><spage>3105</spage><pages>3105-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/molecules28073105</doi><orcidid>https://orcid.org/0000-0001-8094-5351</orcidid><orcidid>https://orcid.org/0000-0003-0035-0070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2023-03, Vol.28 (7), p.3105 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ac9b90ffb8764f8fa2d55cc18ecfd790 |
source | PubMed Central(OA); ProQuest - Publicly Available Content Database |
subjects | Carbon Carbon dioxide catalyst design Catalysts Chemical reactions CO2RR Density functional theory Dependent variables DFT Electrochemistry Genetic algorithms Hydrogen Mathematical models metalloporphyrin Metals Nitrogen atoms Porphyrins QSER Reduction (metal working) Statistical analysis Transition metals |
title | Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Structure%E2%80%93Electrochemistry%20Relationship%20(QSER)%20Studies%20on%20Metal%E2%80%93Amino%E2%80%93Porphyrins%20for%20the%20Rational%20Design%20of%20CO2%20Reduction%20Catalysts&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Chen,%20Furong&rft.date=2023-03-30&rft.volume=28&rft.issue=7&rft.spage=3105&rft.pages=3105-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28073105&rft_dat=%3Cproquest_doaj_%3E2800624863%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-b69e0d443fd2a1d2119e56c0189d700667630414830b69349d8349f597d931973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799673301&rft_id=info:pmid/&rfr_iscdi=true |