Loading…

Hydraulic Performance and Energy Loss Effect of Pit Structure Optimized Drip Irrigation Emitter

The pit structure optimized drip irrigation emitter (PODE) is a novel type of irrigation emitter that may provide shunts, quick diversion, and mixed flow to maximize energy loss. To study the influence of the geometric parameters of the flow channel on the hydraulic characteristics and energy loss e...

Full description

Saved in:
Bibliographic Details
Published in:Nature environment and pollution technology 2022-06, Vol.21 (2), p.487-496
Main Authors: Xu, Tianyu, Zhi, Shuteng, Yu, Qiuyue, Zheng, Ennan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pit structure optimized drip irrigation emitter (PODE) is a novel type of irrigation emitter that may provide shunts, quick diversion, and mixed flow to maximize energy loss. To study the influence of the geometric parameters of the flow channel on the hydraulic characteristics and energy loss effect, twenty-five sets of orthogonal test schemes were established. Using numerical simulation and verification tests, the flow index and energy loss coefficient were obtained. The results showed that the flow index of the PODE was 0.4632-0.5265, and its hydraulic performance was good. The energy loss coefficient under the pressure head of 5-15 m was 510-2221, which showed that the energy loss effect was obvious. The influence order of the geometric parameters on the flow index was B>P>C>D>A, the optimal solution was P0.6D1.4A85B0.25C0.12. The determination coefficient of the regression model based on geometric parameters and flow index was 0.85. In addition, the verification test showed that the relative error among the test value, simulated value, and estimated value were less than 5%, and the flow index can be estimated reliably. The research can provide a reference for the pre-research and evaluation of the hydraulic performance and energy loss effect of the PODE.
ISSN:2395-3454
0972-6268
2395-3454
DOI:10.46488/NEPT.2022.v21i02.007