Loading…

Drone Detection and Tracking Using RF Identification Signals

The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strateg...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-09, Vol.23 (17), p.7650
Main Authors: Aouladhadj, Driss, Kpre, Ettien, Deniau, Virginie, Kharchouf, Aymane, Gransart, Christophe, Gaquière, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993
cites cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993
container_end_page
container_issue 17
container_start_page 7650
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Aouladhadj, Driss
Kpre, Ettien
Deniau, Virginie
Kharchouf, Aymane
Gransart, Christophe
Gaquière, Christophe
description The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.
doi_str_mv 10.3390/s23177650
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764465786</galeid><doaj_id>oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56</doaj_id><sourcerecordid>A764465786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</originalsourceid><addsrcrecordid>eNpdUltrFDEUDqLYiz74DwZ8sQ9bc08GBFl6sQsLgrbPIddp1tmkJrMF_72Zbqm2JOSEk-98-c4FgA8InhLSw88VEyQEZ_AVOEQU04XEGL7-734AjmrdQIgJIfItOCCCS4kgOwRfzktOvjv3k7dTzKnTyXXXRdtfMQ3dTZ3PH5fdyvk0xRCtfgD9jEPSY30H3oRm_PtHewxuLi-uz64W6-_fVmfL9cIyDKcFtRxhIgwPDhInMOSU9QgLL5kh2lgIWxZGEok55xgZ77XtXdsyOGP7nhyD1Z7XZb1RdyVudfmjso7qwZHLoHSZoh290tY67riWzmHKA-spsp5ggWQw2jDeuL7uue52ZuudbXkVPT4jff6S4q0a8r1CkPZQItQYTvYMty_irpZrNfsgxZD1nN7P2E-Pv5X8e-frpLaxWj-OOvm8qwpLTkjrC5MN-vEFdJN3ZS7zjMKCYE7mUpzuUYNu2cYUchNp23J-G21rZYjNvxScUs6E5P_U2pJrLT48SUZQzdOjnqaH_AVPr7Jh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862732639</pqid></control><display><type>article</type><title>Drone Detection and Tracking Using RF Identification Signals</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</creator><creatorcontrib>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</creatorcontrib><description>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23177650</identifier><identifier>PMID: 37688105</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Altitude ; Analysis ; C-UAS ; Classification ; Communication ; Computer Science ; Computer software industry ; detection system ; drone ; Drone ID ; Drones ; Engineering Sciences ; Global positioning systems ; GPS ; Localization ; Machine learning ; Methods ; Neural networks ; Open source software ; Performance evaluation ; Radio frequency ; RF signal ; Safety and security measures ; Semiconductor industry ; Sensors ; Signal processing ; Software utilities ; Surveillance ; UAV ; Unmanned aerial vehicles ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2023-09, Vol.23 (17), p.7650</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</citedby><cites>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</cites><orcidid>0000-0003-4781-8654 ; 0000-0003-3082-2489 ; 0000-0001-5923-730X ; 0009-0009-9541-8576 ; 0000-0002-6984-8048 ; 0000-0002-8802-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862732639/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862732639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://univ-eiffel.hal.science/hal-04205964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouladhadj, Driss</creatorcontrib><creatorcontrib>Kpre, Ettien</creatorcontrib><creatorcontrib>Deniau, Virginie</creatorcontrib><creatorcontrib>Kharchouf, Aymane</creatorcontrib><creatorcontrib>Gransart, Christophe</creatorcontrib><creatorcontrib>Gaquière, Christophe</creatorcontrib><title>Drone Detection and Tracking Using RF Identification Signals</title><title>Sensors (Basel, Switzerland)</title><description>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Analysis</subject><subject>C-UAS</subject><subject>Classification</subject><subject>Communication</subject><subject>Computer Science</subject><subject>Computer software industry</subject><subject>detection system</subject><subject>drone</subject><subject>Drone ID</subject><subject>Drones</subject><subject>Engineering Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Open source software</subject><subject>Performance evaluation</subject><subject>Radio frequency</subject><subject>RF signal</subject><subject>Safety and security measures</subject><subject>Semiconductor industry</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Software utilities</subject><subject>Surveillance</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUltrFDEUDqLYiz74DwZ8sQ9bc08GBFl6sQsLgrbPIddp1tmkJrMF_72Zbqm2JOSEk-98-c4FgA8InhLSw88VEyQEZ_AVOEQU04XEGL7-734AjmrdQIgJIfItOCCCS4kgOwRfzktOvjv3k7dTzKnTyXXXRdtfMQ3dTZ3PH5fdyvk0xRCtfgD9jEPSY30H3oRm_PtHewxuLi-uz64W6-_fVmfL9cIyDKcFtRxhIgwPDhInMOSU9QgLL5kh2lgIWxZGEok55xgZ77XtXdsyOGP7nhyD1Z7XZb1RdyVudfmjso7qwZHLoHSZoh290tY67riWzmHKA-spsp5ggWQw2jDeuL7uue52ZuudbXkVPT4jff6S4q0a8r1CkPZQItQYTvYMty_irpZrNfsgxZD1nN7P2E-Pv5X8e-frpLaxWj-OOvm8qwpLTkjrC5MN-vEFdJN3ZS7zjMKCYE7mUpzuUYNu2cYUchNp23J-G21rZYjNvxScUs6E5P_U2pJrLT48SUZQzdOjnqaH_AVPr7Jh</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Aouladhadj, Driss</creator><creator>Kpre, Ettien</creator><creator>Deniau, Virginie</creator><creator>Kharchouf, Aymane</creator><creator>Gransart, Christophe</creator><creator>Gaquière, Christophe</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4781-8654</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5923-730X</orcidid><orcidid>https://orcid.org/0009-0009-9541-8576</orcidid><orcidid>https://orcid.org/0000-0002-6984-8048</orcidid><orcidid>https://orcid.org/0000-0002-8802-911X</orcidid></search><sort><creationdate>20230901</creationdate><title>Drone Detection and Tracking Using RF Identification Signals</title><author>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Analysis</topic><topic>C-UAS</topic><topic>Classification</topic><topic>Communication</topic><topic>Computer Science</topic><topic>Computer software industry</topic><topic>detection system</topic><topic>drone</topic><topic>Drone ID</topic><topic>Drones</topic><topic>Engineering Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Open source software</topic><topic>Performance evaluation</topic><topic>Radio frequency</topic><topic>RF signal</topic><topic>Safety and security measures</topic><topic>Semiconductor industry</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Software utilities</topic><topic>Surveillance</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouladhadj, Driss</creatorcontrib><creatorcontrib>Kpre, Ettien</creatorcontrib><creatorcontrib>Deniau, Virginie</creatorcontrib><creatorcontrib>Kharchouf, Aymane</creatorcontrib><creatorcontrib>Gransart, Christophe</creatorcontrib><creatorcontrib>Gaquière, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouladhadj, Driss</au><au>Kpre, Ettien</au><au>Deniau, Virginie</au><au>Kharchouf, Aymane</au><au>Gransart, Christophe</au><au>Gaquière, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Detection and Tracking Using RF Identification Signals</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>23</volume><issue>17</issue><spage>7650</spage><pages>7650-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37688105</pmid><doi>10.3390/s23177650</doi><orcidid>https://orcid.org/0000-0003-4781-8654</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5923-730X</orcidid><orcidid>https://orcid.org/0009-0009-9541-8576</orcidid><orcidid>https://orcid.org/0000-0002-6984-8048</orcidid><orcidid>https://orcid.org/0000-0002-8802-911X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-09, Vol.23 (17), p.7650
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Altitude
Analysis
C-UAS
Classification
Communication
Computer Science
Computer software industry
detection system
drone
Drone ID
Drones
Engineering Sciences
Global positioning systems
GPS
Localization
Machine learning
Methods
Neural networks
Open source software
Performance evaluation
Radio frequency
RF signal
Safety and security measures
Semiconductor industry
Sensors
Signal processing
Software utilities
Surveillance
UAV
Unmanned aerial vehicles
Wavelet transforms
title Drone Detection and Tracking Using RF Identification Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Detection%20and%20Tracking%20Using%20RF%20Identification%20Signals&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Aouladhadj,%20Driss&rft.date=2023-09-01&rft.volume=23&rft.issue=17&rft.spage=7650&rft.pages=7650-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23177650&rft_dat=%3Cgale_doaj_%3EA764465786%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862732639&rft_id=info:pmid/37688105&rft_galeid=A764465786&rfr_iscdi=true