Loading…
Drone Detection and Tracking Using RF Identification Signals
The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strateg...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-09, Vol.23 (17), p.7650 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993 |
container_end_page | |
container_issue | 17 |
container_start_page | 7650 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Aouladhadj, Driss Kpre, Ettien Deniau, Virginie Kharchouf, Aymane Gransart, Christophe Gaquière, Christophe |
description | The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security. |
doi_str_mv | 10.3390/s23177650 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764465786</galeid><doaj_id>oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56</doaj_id><sourcerecordid>A764465786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</originalsourceid><addsrcrecordid>eNpdUltrFDEUDqLYiz74DwZ8sQ9bc08GBFl6sQsLgrbPIddp1tmkJrMF_72Zbqm2JOSEk-98-c4FgA8InhLSw88VEyQEZ_AVOEQU04XEGL7-734AjmrdQIgJIfItOCCCS4kgOwRfzktOvjv3k7dTzKnTyXXXRdtfMQ3dTZ3PH5fdyvk0xRCtfgD9jEPSY30H3oRm_PtHewxuLi-uz64W6-_fVmfL9cIyDKcFtRxhIgwPDhInMOSU9QgLL5kh2lgIWxZGEok55xgZ77XtXdsyOGP7nhyD1Z7XZb1RdyVudfmjso7qwZHLoHSZoh290tY67riWzmHKA-spsp5ggWQw2jDeuL7uue52ZuudbXkVPT4jff6S4q0a8r1CkPZQItQYTvYMty_irpZrNfsgxZD1nN7P2E-Pv5X8e-frpLaxWj-OOvm8qwpLTkjrC5MN-vEFdJN3ZS7zjMKCYE7mUpzuUYNu2cYUchNp23J-G21rZYjNvxScUs6E5P_U2pJrLT48SUZQzdOjnqaH_AVPr7Jh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862732639</pqid></control><display><type>article</type><title>Drone Detection and Tracking Using RF Identification Signals</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</creator><creatorcontrib>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</creatorcontrib><description>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23177650</identifier><identifier>PMID: 37688105</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Altitude ; Analysis ; C-UAS ; Classification ; Communication ; Computer Science ; Computer software industry ; detection system ; drone ; Drone ID ; Drones ; Engineering Sciences ; Global positioning systems ; GPS ; Localization ; Machine learning ; Methods ; Neural networks ; Open source software ; Performance evaluation ; Radio frequency ; RF signal ; Safety and security measures ; Semiconductor industry ; Sensors ; Signal processing ; Software utilities ; Surveillance ; UAV ; Unmanned aerial vehicles ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2023-09, Vol.23 (17), p.7650</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</citedby><cites>FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</cites><orcidid>0000-0003-4781-8654 ; 0000-0003-3082-2489 ; 0000-0001-5923-730X ; 0009-0009-9541-8576 ; 0000-0002-6984-8048 ; 0000-0002-8802-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862732639/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862732639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://univ-eiffel.hal.science/hal-04205964$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouladhadj, Driss</creatorcontrib><creatorcontrib>Kpre, Ettien</creatorcontrib><creatorcontrib>Deniau, Virginie</creatorcontrib><creatorcontrib>Kharchouf, Aymane</creatorcontrib><creatorcontrib>Gransart, Christophe</creatorcontrib><creatorcontrib>Gaquière, Christophe</creatorcontrib><title>Drone Detection and Tracking Using RF Identification Signals</title><title>Sensors (Basel, Switzerland)</title><description>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Analysis</subject><subject>C-UAS</subject><subject>Classification</subject><subject>Communication</subject><subject>Computer Science</subject><subject>Computer software industry</subject><subject>detection system</subject><subject>drone</subject><subject>Drone ID</subject><subject>Drones</subject><subject>Engineering Sciences</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Open source software</subject><subject>Performance evaluation</subject><subject>Radio frequency</subject><subject>RF signal</subject><subject>Safety and security measures</subject><subject>Semiconductor industry</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Software utilities</subject><subject>Surveillance</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUltrFDEUDqLYiz74DwZ8sQ9bc08GBFl6sQsLgrbPIddp1tmkJrMF_72Zbqm2JOSEk-98-c4FgA8InhLSw88VEyQEZ_AVOEQU04XEGL7-734AjmrdQIgJIfItOCCCS4kgOwRfzktOvjv3k7dTzKnTyXXXRdtfMQ3dTZ3PH5fdyvk0xRCtfgD9jEPSY30H3oRm_PtHewxuLi-uz64W6-_fVmfL9cIyDKcFtRxhIgwPDhInMOSU9QgLL5kh2lgIWxZGEok55xgZ77XtXdsyOGP7nhyD1Z7XZb1RdyVudfmjso7qwZHLoHSZoh290tY67riWzmHKA-spsp5ggWQw2jDeuL7uue52ZuudbXkVPT4jff6S4q0a8r1CkPZQItQYTvYMty_irpZrNfsgxZD1nN7P2E-Pv5X8e-frpLaxWj-OOvm8qwpLTkjrC5MN-vEFdJN3ZS7zjMKCYE7mUpzuUYNu2cYUchNp23J-G21rZYjNvxScUs6E5P_U2pJrLT48SUZQzdOjnqaH_AVPr7Jh</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Aouladhadj, Driss</creator><creator>Kpre, Ettien</creator><creator>Deniau, Virginie</creator><creator>Kharchouf, Aymane</creator><creator>Gransart, Christophe</creator><creator>Gaquière, Christophe</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4781-8654</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5923-730X</orcidid><orcidid>https://orcid.org/0009-0009-9541-8576</orcidid><orcidid>https://orcid.org/0000-0002-6984-8048</orcidid><orcidid>https://orcid.org/0000-0002-8802-911X</orcidid></search><sort><creationdate>20230901</creationdate><title>Drone Detection and Tracking Using RF Identification Signals</title><author>Aouladhadj, Driss ; Kpre, Ettien ; Deniau, Virginie ; Kharchouf, Aymane ; Gransart, Christophe ; Gaquière, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Analysis</topic><topic>C-UAS</topic><topic>Classification</topic><topic>Communication</topic><topic>Computer Science</topic><topic>Computer software industry</topic><topic>detection system</topic><topic>drone</topic><topic>Drone ID</topic><topic>Drones</topic><topic>Engineering Sciences</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Open source software</topic><topic>Performance evaluation</topic><topic>Radio frequency</topic><topic>RF signal</topic><topic>Safety and security measures</topic><topic>Semiconductor industry</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Software utilities</topic><topic>Surveillance</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouladhadj, Driss</creatorcontrib><creatorcontrib>Kpre, Ettien</creatorcontrib><creatorcontrib>Deniau, Virginie</creatorcontrib><creatorcontrib>Kharchouf, Aymane</creatorcontrib><creatorcontrib>Gransart, Christophe</creatorcontrib><creatorcontrib>Gaquière, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouladhadj, Driss</au><au>Kpre, Ettien</au><au>Deniau, Virginie</au><au>Kharchouf, Aymane</au><au>Gransart, Christophe</au><au>Gaquière, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Detection and Tracking Using RF Identification Signals</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>23</volume><issue>17</issue><spage>7650</spage><pages>7650-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37688105</pmid><doi>10.3390/s23177650</doi><orcidid>https://orcid.org/0000-0003-4781-8654</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5923-730X</orcidid><orcidid>https://orcid.org/0009-0009-9541-8576</orcidid><orcidid>https://orcid.org/0000-0002-6984-8048</orcidid><orcidid>https://orcid.org/0000-0002-8802-911X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-09, Vol.23 (17), p.7650 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_accd6d6a8dd246f5941ce32718fbab56 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms Altitude Analysis C-UAS Classification Communication Computer Science Computer software industry detection system drone Drone ID Drones Engineering Sciences Global positioning systems GPS Localization Machine learning Methods Neural networks Open source software Performance evaluation Radio frequency RF signal Safety and security measures Semiconductor industry Sensors Signal processing Software utilities Surveillance UAV Unmanned aerial vehicles Wavelet transforms |
title | Drone Detection and Tracking Using RF Identification Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Detection%20and%20Tracking%20Using%20RF%20Identification%20Signals&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Aouladhadj,%20Driss&rft.date=2023-09-01&rft.volume=23&rft.issue=17&rft.spage=7650&rft.pages=7650-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23177650&rft_dat=%3Cgale_doaj_%3EA764465786%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-4c61237b6fd03d7206459127e85b3abc00339b838266621beeac9dc9d8fdbc993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862732639&rft_id=info:pmid/37688105&rft_galeid=A764465786&rfr_iscdi=true |