Loading…

Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives

Various methods exist that utilise information from genetic predictors to help identify potential causal relationships between measured biological or clinical traits. Here we conduct computer simulations to investigate the performance of a recently proposed causal Graphical Analysis Using Genetics (...

Full description

Saved in:
Bibliographic Details
Published in:Wellcome open research 2022-01, Vol.7, p.180-180
Main Authors: Howey, Richard, Cordell, Heather J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2531-d2fe306a23586f302f53d9579d18737547d7bd6f754e5a07ab03094aa4300c463
container_end_page 180
container_issue
container_start_page 180
container_title Wellcome open research
container_volume 7
creator Howey, Richard
Cordell, Heather J.
description Various methods exist that utilise information from genetic predictors to help identify potential causal relationships between measured biological or clinical traits. Here we conduct computer simulations to investigate the performance of a recently proposed causal Graphical Analysis Using Genetics (cGAUGE) pipeline, used as a precursor to Mendelian randomization analysis, in comparison to our previously proposed Bayesian Network approach for addressing this problem. We use the same simulation (and analysis) code as was used by the developers of cGAUGE, adding in a comparison with the Bayesian Network approach. Overall, we find the optimal method (in terms of giving high power and low false discovery rate) is the cGAUGE pipeline followed by subsequent analysis using the MR-PRESSO Mendelian randomization approach.
doi_str_mv 10.12688/wellcomeopenres.17991.1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_acdf093f39e84a0ea55a3e7c1a18756a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_acdf093f39e84a0ea55a3e7c1a18756a</doaj_id><sourcerecordid>2711841949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2531-d2fe306a23586f302f53d9579d18737547d7bd6f754e5a07ab03094aa4300c463</originalsourceid><addsrcrecordid>eNpdUk1rGzEQXUpLE9L8Bx3Tg1197K6kS8GYdBsI5FJDb2KsHdkKa2kr7brkr-TXVthpaHqax7yZ92akqSrC6JLxVqkvv3EYbDxgHDEkzEsmtWZL9q665EKrRUP5z_f_4IvqOudHSilTLVeKfqwuREslpy29rJ7XMTifDjD5GEh0ZNojyfOIycdESnCxkMHiX87CnGEgXYJx721BqwDDU_aZbLIPO9JhwMnbTG5st9p0t5_J6EccfEDiAyljj5B8Ll5TJMcC45xP2dJUumGYMIUyzBHzp-qDgyHj9Uu8qjbfbn-svy_uH7q79ep-YXkj2KLnDgVtgYtGtU5Q7hrR60bqnikpZFPLXm771hWEDVAJWyqorgFqQamtW3FV3Z11-wiPZkz-AOnJRPDmlIhpZyCVlQY0YHtHtXBCo6qBIjQNCJSWQfFqWihaX89a47w9YG8xTAmGN6JvmeD3ZhePRteMaVkXgZsXgRR_zZgnc_DZlg-HgOWpDJeMqZrpWpdSdS61Keac0L3aMGpOl2L-uxRzuhTDxB-Nsbkf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711841949</pqid></control><display><type>article</type><title>Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives</title><source>PubMed Central</source><creator>Howey, Richard ; Cordell, Heather J.</creator><creatorcontrib>Howey, Richard ; Cordell, Heather J.</creatorcontrib><description>Various methods exist that utilise information from genetic predictors to help identify potential causal relationships between measured biological or clinical traits. Here we conduct computer simulations to investigate the performance of a recently proposed causal Graphical Analysis Using Genetics (cGAUGE) pipeline, used as a precursor to Mendelian randomization analysis, in comparison to our previously proposed Bayesian Network approach for addressing this problem. We use the same simulation (and analysis) code as was used by the developers of cGAUGE, adding in a comparison with the Bayesian Network approach. Overall, we find the optimal method (in terms of giving high power and low false discovery rate) is the cGAUGE pipeline followed by subsequent analysis using the MR-PRESSO Mendelian randomization approach.</description><identifier>ISSN: 2398-502X</identifier><identifier>EISSN: 2398-502X</identifier><identifier>DOI: 10.12688/wellcomeopenres.17991.1</identifier><identifier>PMID: 36072060</identifier><language>eng</language><publisher>London, UK: F1000 Research Limited</publisher><subject>Bayesian networks ; Causal inference ; eng ; Mendelian randomization ; Research Note</subject><ispartof>Wellcome open research, 2022-01, Vol.7, p.180-180</ispartof><rights>Copyright: © 2022 Howey R and Cordell HJ 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2531-d2fe306a23586f302f53d9579d18737547d7bd6f754e5a07ab03094aa4300c463</cites><orcidid>0000-0002-1879-5572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411974/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411974/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Howey, Richard</creatorcontrib><creatorcontrib>Cordell, Heather J.</creatorcontrib><title>Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives</title><title>Wellcome open research</title><description>Various methods exist that utilise information from genetic predictors to help identify potential causal relationships between measured biological or clinical traits. Here we conduct computer simulations to investigate the performance of a recently proposed causal Graphical Analysis Using Genetics (cGAUGE) pipeline, used as a precursor to Mendelian randomization analysis, in comparison to our previously proposed Bayesian Network approach for addressing this problem. We use the same simulation (and analysis) code as was used by the developers of cGAUGE, adding in a comparison with the Bayesian Network approach. Overall, we find the optimal method (in terms of giving high power and low false discovery rate) is the cGAUGE pipeline followed by subsequent analysis using the MR-PRESSO Mendelian randomization approach.</description><subject>Bayesian networks</subject><subject>Causal inference</subject><subject>eng</subject><subject>Mendelian randomization</subject><subject>Research Note</subject><issn>2398-502X</issn><issn>2398-502X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdUk1rGzEQXUpLE9L8Bx3Tg1197K6kS8GYdBsI5FJDb2KsHdkKa2kr7brkr-TXVthpaHqax7yZ92akqSrC6JLxVqkvv3EYbDxgHDEkzEsmtWZL9q665EKrRUP5z_f_4IvqOudHSilTLVeKfqwuREslpy29rJ7XMTifDjD5GEh0ZNojyfOIycdESnCxkMHiX87CnGEgXYJx721BqwDDU_aZbLIPO9JhwMnbTG5st9p0t5_J6EccfEDiAyljj5B8Ll5TJMcC45xP2dJUumGYMIUyzBHzp-qDgyHj9Uu8qjbfbn-svy_uH7q79ep-YXkj2KLnDgVtgYtGtU5Q7hrR60bqnikpZFPLXm771hWEDVAJWyqorgFqQamtW3FV3Z11-wiPZkz-AOnJRPDmlIhpZyCVlQY0YHtHtXBCo6qBIjQNCJSWQfFqWihaX89a47w9YG8xTAmGN6JvmeD3ZhePRteMaVkXgZsXgRR_zZgnc_DZlg-HgOWpDJeMqZrpWpdSdS61Keac0L3aMGpOl2L-uxRzuhTDxB-Nsbkf</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Howey, Richard</creator><creator>Cordell, Heather J.</creator><general>F1000 Research Limited</general><general>Wellcome</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1879-5572</orcidid></search><sort><creationdate>20220101</creationdate><title>Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives</title><author>Howey, Richard ; Cordell, Heather J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2531-d2fe306a23586f302f53d9579d18737547d7bd6f754e5a07ab03094aa4300c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian networks</topic><topic>Causal inference</topic><topic>eng</topic><topic>Mendelian randomization</topic><topic>Research Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howey, Richard</creatorcontrib><creatorcontrib>Cordell, Heather J.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Wellcome open research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howey, Richard</au><au>Cordell, Heather J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives</atitle><jtitle>Wellcome open research</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>7</volume><spage>180</spage><epage>180</epage><pages>180-180</pages><issn>2398-502X</issn><eissn>2398-502X</eissn><abstract>Various methods exist that utilise information from genetic predictors to help identify potential causal relationships between measured biological or clinical traits. Here we conduct computer simulations to investigate the performance of a recently proposed causal Graphical Analysis Using Genetics (cGAUGE) pipeline, used as a precursor to Mendelian randomization analysis, in comparison to our previously proposed Bayesian Network approach for addressing this problem. We use the same simulation (and analysis) code as was used by the developers of cGAUGE, adding in a comparison with the Bayesian Network approach. Overall, we find the optimal method (in terms of giving high power and low false discovery rate) is the cGAUGE pipeline followed by subsequent analysis using the MR-PRESSO Mendelian randomization approach.</abstract><cop>London, UK</cop><pub>F1000 Research Limited</pub><pmid>36072060</pmid><doi>10.12688/wellcomeopenres.17991.1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1879-5572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-502X
ispartof Wellcome open research, 2022-01, Vol.7, p.180-180
issn 2398-502X
2398-502X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_acdf093f39e84a0ea55a3e7c1a18756a
source PubMed Central
subjects Bayesian networks
Causal inference
eng
Mendelian randomization
Research Note
title Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confirmation%20of%20the%20superior%20performance%20of%20the%20causal%20Graphical%20Analysis%20Using%20Genetics%20(cGAUGE)%20pipeline%20in%20comparison%20to%20various%20competing%20alternatives&rft.jtitle=Wellcome%20open%20research&rft.au=Howey,%20Richard&rft.date=2022-01-01&rft.volume=7&rft.spage=180&rft.epage=180&rft.pages=180-180&rft.issn=2398-502X&rft.eissn=2398-502X&rft_id=info:doi/10.12688/wellcomeopenres.17991.1&rft_dat=%3Cproquest_doaj_%3E2711841949%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2531-d2fe306a23586f302f53d9579d18737547d7bd6f754e5a07ab03094aa4300c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711841949&rft_id=info:pmid/36072060&rfr_iscdi=true