Loading…

3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking

Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and a...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicines 2021-09, Vol.9 (9), p.1224
Main Authors: Roh, Hyun-Ho, Kim, Hyun-Seung, Kim, Chunggoo, Lee, Kuen-Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3
cites cdi_FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3
container_end_page
container_issue 9
container_start_page 1224
container_title Biomedicines
container_volume 9
creator Roh, Hyun-Ho
Kim, Hyun-Seung
Kim, Chunggoo
Lee, Kuen-Yong
description Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.
doi_str_mv 10.3390/biomedicines9091224
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ace5b377b7934551b76c7ddcc466ea2e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ace5b377b7934551b76c7ddcc466ea2e</doaj_id><sourcerecordid>2576383911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3</originalsourceid><addsrcrecordid>eNptkktvEzEUhUcIRKvSX8BmJDZsBvz2eINUUiCVIlHxWFt-3EkcHLvYE1D-PQ6pEEV4Y-v6u8fHR7frnmP0ilKFXtuQd-CDCwmqQgoTwh5154QQOSjE1eO_zmfdZa1b1JbCdMTsaXdGGZeEYXTeJXrd35aQ5pDWfZ762xwP1Ti3MSV4GN6aCr7_DHEalmDiEVoefMlriP0nCGnKxTXgZ5g3_VVch2Rm6FuxtbicvCmHflFyrcMqpG-t-1n3ZDKxwuX9ftF9ff_uy2I5rD5-uFlcrQbHpJgHxvnEJoJ4szn65tsSYI4b7x0S3CDnQWArwHIDBtux_c1TJZRhYK0HSy-6m5Ouz2ar70rYNSs6m6B_F3JZa1Pm4CJo44BbKqWVqsXCsZXCyfaQY0KAIdC03py07va2Ze4gzcXEB6IPb1LY6HX-oUcmsSK0Cby8Fyj5-x7qrHehOojRJMj7qgmXkgnM5NjQF_-g27wvqUV1pAQdqcK4UfREuWO2BaY_ZjDSx_HQ_xkP-gvcT7FV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576383911</pqid></control><display><type>article</type><title>3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content (ProQuest)</source><creator>Roh, Hyun-Ho ; Kim, Hyun-Seung ; Kim, Chunggoo ; Lee, Kuen-Yong</creator><creatorcontrib>Roh, Hyun-Ho ; Kim, Hyun-Seung ; Kim, Chunggoo ; Lee, Kuen-Yong</creatorcontrib><description>Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.</description><identifier>ISSN: 2227-9059</identifier><identifier>EISSN: 2227-9059</identifier><identifier>DOI: 10.3390/biomedicines9091224</identifier><identifier>PMID: 34572410</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Adipic acid ; Alginic acid ; Cartilage ; Chitosan ; Cytotoxicity ; Fourier transforms ; Gene expression ; Hydrogels ; Mechanical properties ; polysaccharide ; Polysaccharides ; secondary cross-linking ; self-healing hydrogel ; Shear stress ; Sodium ; Tissue engineering ; Viscoelasticity</subject><ispartof>Biomedicines, 2021-09, Vol.9 (9), p.1224</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3</citedby><cites>FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3</cites><orcidid>0000-0002-5759-5952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576383911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576383911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Roh, Hyun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Seung</creatorcontrib><creatorcontrib>Kim, Chunggoo</creatorcontrib><creatorcontrib>Lee, Kuen-Yong</creatorcontrib><title>3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking</title><title>Biomedicines</title><description>Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Adipic acid</subject><subject>Alginic acid</subject><subject>Cartilage</subject><subject>Chitosan</subject><subject>Cytotoxicity</subject><subject>Fourier transforms</subject><subject>Gene expression</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>polysaccharide</subject><subject>Polysaccharides</subject><subject>secondary cross-linking</subject><subject>self-healing hydrogel</subject><subject>Shear stress</subject><subject>Sodium</subject><subject>Tissue engineering</subject><subject>Viscoelasticity</subject><issn>2227-9059</issn><issn>2227-9059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktvEzEUhUcIRKvSX8BmJDZsBvz2eINUUiCVIlHxWFt-3EkcHLvYE1D-PQ6pEEV4Y-v6u8fHR7frnmP0ilKFXtuQd-CDCwmqQgoTwh5154QQOSjE1eO_zmfdZa1b1JbCdMTsaXdGGZeEYXTeJXrd35aQ5pDWfZ762xwP1Ti3MSV4GN6aCr7_DHEalmDiEVoefMlriP0nCGnKxTXgZ5g3_VVch2Rm6FuxtbicvCmHflFyrcMqpG-t-1n3ZDKxwuX9ftF9ff_uy2I5rD5-uFlcrQbHpJgHxvnEJoJ4szn65tsSYI4b7x0S3CDnQWArwHIDBtux_c1TJZRhYK0HSy-6m5Ouz2ar70rYNSs6m6B_F3JZa1Pm4CJo44BbKqWVqsXCsZXCyfaQY0KAIdC03py07va2Ze4gzcXEB6IPb1LY6HX-oUcmsSK0Cby8Fyj5-x7qrHehOojRJMj7qgmXkgnM5NjQF_-g27wvqUV1pAQdqcK4UfREuWO2BaY_ZjDSx_HQ_xkP-gvcT7FV</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Roh, Hyun-Ho</creator><creator>Kim, Hyun-Seung</creator><creator>Kim, Chunggoo</creator><creator>Lee, Kuen-Yong</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5759-5952</orcidid></search><sort><creationdate>20210915</creationdate><title>3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking</title><author>Roh, Hyun-Ho ; Kim, Hyun-Seung ; Kim, Chunggoo ; Lee, Kuen-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Adipic acid</topic><topic>Alginic acid</topic><topic>Cartilage</topic><topic>Chitosan</topic><topic>Cytotoxicity</topic><topic>Fourier transforms</topic><topic>Gene expression</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>polysaccharide</topic><topic>Polysaccharides</topic><topic>secondary cross-linking</topic><topic>self-healing hydrogel</topic><topic>Shear stress</topic><topic>Sodium</topic><topic>Tissue engineering</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roh, Hyun-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Seung</creatorcontrib><creatorcontrib>Kim, Chunggoo</creatorcontrib><creatorcontrib>Lee, Kuen-Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedicines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roh, Hyun-Ho</au><au>Kim, Hyun-Seung</au><au>Kim, Chunggoo</au><au>Lee, Kuen-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking</atitle><jtitle>Biomedicines</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><spage>1224</spage><pages>1224-</pages><issn>2227-9059</issn><eissn>2227-9059</eissn><abstract>Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34572410</pmid><doi>10.3390/biomedicines9091224</doi><orcidid>https://orcid.org/0000-0002-5759-5952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9059
ispartof Biomedicines, 2021-09, Vol.9 (9), p.1224
issn 2227-9059
2227-9059
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ace5b377b7934551b76c7ddcc466ea2e
source NCBI_PubMed Central(免费); Publicly Available Content (ProQuest)
subjects 3-D printers
3D printing
Adipic acid
Alginic acid
Cartilage
Chitosan
Cytotoxicity
Fourier transforms
Gene expression
Hydrogels
Mechanical properties
polysaccharide
Polysaccharides
secondary cross-linking
self-healing hydrogel
Shear stress
Sodium
Tissue engineering
Viscoelasticity
title 3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Polysaccharide-Based%20Self-Healing%20Hydrogel%20Reinforced%20with%20Alginate%20for%20Secondary%20Cross-Linking&rft.jtitle=Biomedicines&rft.au=Roh,%20Hyun-Ho&rft.date=2021-09-15&rft.volume=9&rft.issue=9&rft.spage=1224&rft.pages=1224-&rft.issn=2227-9059&rft.eissn=2227-9059&rft_id=info:doi/10.3390/biomedicines9091224&rft_dat=%3Cproquest_doaj_%3E2576383911%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-455f4f2055728d091b2e4c5addc065a0cde61b6eb5aea1b8000d3969a4ebbdeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576383911&rft_id=info:pmid/34572410&rfr_iscdi=true