Loading…

Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments

In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-11, Vol.23 (22), p.9144
Main Authors: Xue, Ke, Yu, Tao, Sui, Yanlin, Chen, Yongkun, Wang, Longqi, Wang, Zhi, Zhou, Jun, Chen, Yuzhu, Liu, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73
cites cdi_FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73
container_end_page
container_issue 22
container_start_page 9144
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Xue, Ke
Yu, Tao
Sui, Yanlin
Chen, Yongkun
Wang, Longqi
Wang, Zhi
Zhou, Jun
Chen, Yuzhu
Liu, Xin
description In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.
doi_str_mv 10.3390/s23229144
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_acf817b75e7c4a64b50e4eaafee794ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774325995</galeid><doaj_id>oai_doaj_org_article_acf817b75e7c4a64b50e4eaafee794ea</doaj_id><sourcerecordid>A774325995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhlcIJErhwD-wxAUOKf7a2D5GbYFIlVo15WzNesepo1072Jui_HucLqoQ8sEz4-d9R55pmo-MXghh6NfCBeeGSfmqOWOSy4XmnL7-J37bvCtlRykXQuizZnePBSG7RwKxJ-txP-CIcYIppEiSJ0CucEz9YZgrm99hquwmbCMM5O4RCpLVULOTiGyOZcKRhEiujhHG4Mh1fAo5Pb-W980bD0PBD3_v8-bnt-uHyx-Lm9vv68vVzcJJQaeFdtAZ00kNSJcd9or1jHHfcVQC2qVRTPcKK8RBit4zQTvjdOck05Qpp8R5s559-wQ7u89hhHy0CYJ9LqS8tZCn4Aa04LxmqlMtKidhKbuWokQAj6hMDarX59lrn9OvA5bJjqE4HAaImA7Fcm2Elu2Sndp--g_dpUOuY5op0XKldaUuZmoLtX-IPk0ZXD091nmliD7U-kopKXhrTFsFX2aBy6mUjP7lR4za08rty8rFH0-Bnlk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893352788</pqid></control><display><type>article</type><title>Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Xue, Ke ; Yu, Tao ; Sui, Yanlin ; Chen, Yongkun ; Wang, Longqi ; Wang, Zhi ; Zhou, Jun ; Chen, Yuzhu ; Liu, Xin</creator><creatorcontrib>Xue, Ke ; Yu, Tao ; Sui, Yanlin ; Chen, Yongkun ; Wang, Longqi ; Wang, Zhi ; Zhou, Jun ; Chen, Yuzhu ; Liu, Xin</creatorcontrib><description>In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23229144</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>capacitive sensing ; Design ; Digital integrated circuits ; Electrodes ; Energy consumption ; Gravitational waves ; inertial sensors ; Measuring instruments ; phase alignment ; Sensors ; Signal to noise ratio</subject><ispartof>Sensors (Basel, Switzerland), 2023-11, Vol.23 (22), p.9144</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73</citedby><cites>FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73</cites><orcidid>0009-0009-7729-5808 ; 0000-0001-5933-1814 ; 0000-0003-4226-3186 ; 0009-0001-9008-0045 ; 0000-0002-7528-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893352788/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893352788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Sui, Yanlin</creatorcontrib><creatorcontrib>Chen, Yongkun</creatorcontrib><creatorcontrib>Wang, Longqi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Yuzhu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><title>Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments</title><title>Sensors (Basel, Switzerland)</title><description>In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.</description><subject>capacitive sensing</subject><subject>Design</subject><subject>Digital integrated circuits</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>Gravitational waves</subject><subject>inertial sensors</subject><subject>Measuring instruments</subject><subject>phase alignment</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhlcIJErhwD-wxAUOKf7a2D5GbYFIlVo15WzNesepo1072Jui_HucLqoQ8sEz4-d9R55pmo-MXghh6NfCBeeGSfmqOWOSy4XmnL7-J37bvCtlRykXQuizZnePBSG7RwKxJ-txP-CIcYIppEiSJ0CucEz9YZgrm99hquwmbCMM5O4RCpLVULOTiGyOZcKRhEiujhHG4Mh1fAo5Pb-W980bD0PBD3_v8-bnt-uHyx-Lm9vv68vVzcJJQaeFdtAZ00kNSJcd9or1jHHfcVQC2qVRTPcKK8RBit4zQTvjdOck05Qpp8R5s559-wQ7u89hhHy0CYJ9LqS8tZCn4Aa04LxmqlMtKidhKbuWokQAj6hMDarX59lrn9OvA5bJjqE4HAaImA7Fcm2Elu2Sndp--g_dpUOuY5op0XKldaUuZmoLtX-IPk0ZXD091nmliD7U-kopKXhrTFsFX2aBy6mUjP7lR4za08rty8rFH0-Bnlk</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xue, Ke</creator><creator>Yu, Tao</creator><creator>Sui, Yanlin</creator><creator>Chen, Yongkun</creator><creator>Wang, Longqi</creator><creator>Wang, Zhi</creator><creator>Zhou, Jun</creator><creator>Chen, Yuzhu</creator><creator>Liu, Xin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-7729-5808</orcidid><orcidid>https://orcid.org/0000-0001-5933-1814</orcidid><orcidid>https://orcid.org/0000-0003-4226-3186</orcidid><orcidid>https://orcid.org/0009-0001-9008-0045</orcidid><orcidid>https://orcid.org/0000-0002-7528-180X</orcidid></search><sort><creationdate>20231101</creationdate><title>Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments</title><author>Xue, Ke ; Yu, Tao ; Sui, Yanlin ; Chen, Yongkun ; Wang, Longqi ; Wang, Zhi ; Zhou, Jun ; Chen, Yuzhu ; Liu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>capacitive sensing</topic><topic>Design</topic><topic>Digital integrated circuits</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>Gravitational waves</topic><topic>inertial sensors</topic><topic>Measuring instruments</topic><topic>phase alignment</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Ke</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Sui, Yanlin</creatorcontrib><creatorcontrib>Chen, Yongkun</creatorcontrib><creatorcontrib>Wang, Longqi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Yuzhu</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Ke</au><au>Yu, Tao</au><au>Sui, Yanlin</au><au>Chen, Yongkun</au><au>Wang, Longqi</au><au>Wang, Zhi</au><au>Zhou, Jun</au><au>Chen, Yuzhu</au><au>Liu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>9144</spage><pages>9144-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In the space gravitational wave detection mission, inertial sensors play the role of providing an inertial reference for the laser interferometric measurement system. Among them, the capacitance sensor serves as the core key technology of the inertial sensor, used to measure the relative position of the test mass (TM) in the electrode cage. The capacitance sensor utilizes synchronous demodulation technology to extract signals from the AC induction signal. When the phase of the demodulation switch signal is aligned, the synchronous demodulator can most effectively filter out noise, thus directly influencing the performance of the capacitance sensor. However, since the TM is in a suspended state, the information read by the capacitance sensor is dynamic, which increases the difficulty of demodulation phase alignment. In light of this, a method is proposed for achieving the phase alignment of the demodulation switch signal in a dynamic environment. This is accomplished by adjusting the phase of the demodulation switch signal, and subsequently computing the phase difference between the AC induction signal and the demodulation switch signal. At the same time, a measurement and evaluation method for phase deviation is also proposed. Ultimately, an automatic phase alignment system for the demodulation switch signal in dynamic environments is successfully implemented on an FPGA platform, and tests are conducted on a hexapod PI console platform to simulate dynamic environments. The experimental results demonstrate that the system accurately achieves phase alignment in the static environment, with a phase deviation of 0.1394 rad. In the simulated dynamic environment, the phase deviation is 0.1395 rad.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s23229144</doi><orcidid>https://orcid.org/0009-0009-7729-5808</orcidid><orcidid>https://orcid.org/0000-0001-5933-1814</orcidid><orcidid>https://orcid.org/0000-0003-4226-3186</orcidid><orcidid>https://orcid.org/0009-0001-9008-0045</orcidid><orcidid>https://orcid.org/0000-0002-7528-180X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-11, Vol.23 (22), p.9144
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_acf817b75e7c4a64b50e4eaafee794ea
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects capacitive sensing
Design
Digital integrated circuits
Electrodes
Energy consumption
Gravitational waves
inertial sensors
Measuring instruments
phase alignment
Sensors
Signal to noise ratio
title Research and Implementation of a Demodulation Switch Signal Phase Alignment System in Dynamic Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20and%20Implementation%20of%20a%20Demodulation%20Switch%20Signal%20Phase%20Alignment%20System%20in%20Dynamic%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xue,%20Ke&rft.date=2023-11-01&rft.volume=23&rft.issue=22&rft.spage=9144&rft.pages=9144-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23229144&rft_dat=%3Cgale_doaj_%3EA774325995%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-8cab99b48ae06bed71d112fb2e73a569718d7ecab2a43df130b9c8bc418017c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893352788&rft_id=info:pmid/&rft_galeid=A774325995&rfr_iscdi=true