Loading…

An Adoption of the Fractional Maxwell Model for Characterizing the Interfacial Dilational Viscoelasticity of Complex Surfactant Systems

In this communication, the single-element version of the fractional Maxwell model (single FMM) is adopted to quantify the observed behaviour of the interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by the oscillating drop method for aqueous solutions o...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and interfaces 2024-08, Vol.8 (4), p.44
Main Authors: Loglio, Giuseppe, Czakaj, Agnieszka, Jarek, Ewelina, Kovalchuk, Volodymyr I., Krzan, Marcel, Liggieri, Libero, Miller, Reinhard, Warszynski, Piotr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this communication, the single-element version of the fractional Maxwell model (single FMM) is adopted to quantify the observed behaviour of the interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by the oscillating drop method for aqueous solutions of ethyl lauroyl arginate (LAE). The single FMM adequately fits the experimental results, fairly well characterizing the frequency dependence of the modulus and the inherent phase-shift angle of the complex physical quantity, i.e., the interfacial dilational viscoelasticity. Further speculations are envisaged to apply the FMM to step perturbations in the time domain, allowing for the same parameter set as in the frequency domain.
ISSN:2504-5377
2504-5377
DOI:10.3390/colloids8040044