Loading…
Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input
There is a response relationship between wave and ship motion. Based on the LSTM neural network, the mapping relationship between the wave elevation and ship roll motion is established. The wave elevation and ship motion duration data obtained by the CFD simulation are used to predict ship roll moti...
Saved in:
Published in: | Applied sciences 2023-04, Vol.13 (9), p.5298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 5298 |
container_title | Applied sciences |
container_volume | 13 |
creator | Tian, Ximin Song, Yang |
description | There is a response relationship between wave and ship motion. Based on the LSTM neural network, the mapping relationship between the wave elevation and ship roll motion is established. The wave elevation and ship motion duration data obtained by the CFD simulation are used to predict ship roll motion with different input data schemes. The results show that the prediction scheme considering the wave elevation input can predict ship roll motion. Compared with the direct prediction scheme based on the roll data input, the prediction scheme considering the wave elevation input factor can greatly improve the prediction accuracy and effective advance prediction time. Different wave elevation data inputs have different prediction effects. The advance prediction duration will increase with the increase in the input wave elevation position and the ship distance. The simultaneous input of multi-point wave elevation greatly increases the amount of data, allowing the trained model to utilize a greater data depth. This not only improves the advance prediction duration of the prediction model, but it also enhances the robustness of the model, making the prediction results more stable. |
doi_str_mv | 10.3390/app13095298 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad2f1f842b2d4d50a1776981c6144028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752313197</galeid><doaj_id>oai_doaj_org_article_ad2f1f842b2d4d50a1776981c6144028</doaj_id><sourcerecordid>A752313197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRsNRe-QIBL2U1pz3kshQPhRZFK16G2RzalO5mzW4V397YFWnmIpnJ_H8-MklySfANYwLfQtsShkVGRXmSjCgu8pRxUpwenc-TSddtcVyCsJLgUfKyBLVxjUELA6FxzRpZH9Drxoc-XZlQo-dgtFO98w3yNl64Fi39IZ35uopKjb5cv0Hv8GnQvGn3_UVyZmHXmcnfPk7e7u9Ws8d08fQwn00XqeKY9Wme55RrTETkEBbz0gogVhuqSVWRTENBTEUNBl4IZXJdmcpWFBSL5MCxYuNkPvhqD1vZBldD-JYenDwUfFhLCL1TOyNBU0tsyWlFNdcZBlIUeXxY5YRzTMvodTV4tcF_7E3Xy63fhybiS1oSyuMHljh23Qxda4imrrG-D6BiaFM75RtjXaxPi4xGSCKKKLgeBCr4rgvG_mMSLH-HJo-Gxn4AQT6Hrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812407680</pqid></control><display><type>article</type><title>Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input</title><source>Publicly Available Content Database</source><creator>Tian, Ximin ; Song, Yang</creator><creatorcontrib>Tian, Ximin ; Song, Yang</creatorcontrib><description>There is a response relationship between wave and ship motion. Based on the LSTM neural network, the mapping relationship between the wave elevation and ship roll motion is established. The wave elevation and ship motion duration data obtained by the CFD simulation are used to predict ship roll motion with different input data schemes. The results show that the prediction scheme considering the wave elevation input can predict ship roll motion. Compared with the direct prediction scheme based on the roll data input, the prediction scheme considering the wave elevation input factor can greatly improve the prediction accuracy and effective advance prediction time. Different wave elevation data inputs have different prediction effects. The advance prediction duration will increase with the increase in the input wave elevation position and the ship distance. The simultaneous input of multi-point wave elevation greatly increases the amount of data, allowing the trained model to utilize a greater data depth. This not only improves the advance prediction duration of the prediction model, but it also enhances the robustness of the model, making the prediction results more stable.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13095298</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Elevation ; Kalman filters ; Machine learning ; Methods ; Neural networks ; Optimization algorithms ; Prediction models ; random wave ; Rolling motion ; Ship motion ; Ships ; short-term prediction ; Wavelet transforms</subject><ispartof>Applied sciences, 2023-04, Vol.13 (9), p.5298</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3</citedby><cites>FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812407680/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812407680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tian, Ximin</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><title>Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input</title><title>Applied sciences</title><description>There is a response relationship between wave and ship motion. Based on the LSTM neural network, the mapping relationship between the wave elevation and ship roll motion is established. The wave elevation and ship motion duration data obtained by the CFD simulation are used to predict ship roll motion with different input data schemes. The results show that the prediction scheme considering the wave elevation input can predict ship roll motion. Compared with the direct prediction scheme based on the roll data input, the prediction scheme considering the wave elevation input factor can greatly improve the prediction accuracy and effective advance prediction time. Different wave elevation data inputs have different prediction effects. The advance prediction duration will increase with the increase in the input wave elevation position and the ship distance. The simultaneous input of multi-point wave elevation greatly increases the amount of data, allowing the trained model to utilize a greater data depth. This not only improves the advance prediction duration of the prediction model, but it also enhances the robustness of the model, making the prediction results more stable.</description><subject>Accuracy</subject><subject>Elevation</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Prediction models</subject><subject>random wave</subject><subject>Rolling motion</subject><subject>Ship motion</subject><subject>Ships</subject><subject>short-term prediction</subject><subject>Wavelet transforms</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRsNRe-QIBL2U1pz3kshQPhRZFK16G2RzalO5mzW4V397YFWnmIpnJ_H8-MklySfANYwLfQtsShkVGRXmSjCgu8pRxUpwenc-TSddtcVyCsJLgUfKyBLVxjUELA6FxzRpZH9Drxoc-XZlQo-dgtFO98w3yNl64Fi39IZ35uopKjb5cv0Hv8GnQvGn3_UVyZmHXmcnfPk7e7u9Ws8d08fQwn00XqeKY9Wme55RrTETkEBbz0gogVhuqSVWRTENBTEUNBl4IZXJdmcpWFBSL5MCxYuNkPvhqD1vZBldD-JYenDwUfFhLCL1TOyNBU0tsyWlFNdcZBlIUeXxY5YRzTMvodTV4tcF_7E3Xy63fhybiS1oSyuMHljh23Qxda4imrrG-D6BiaFM75RtjXaxPi4xGSCKKKLgeBCr4rgvG_mMSLH-HJo-Gxn4AQT6Hrw</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Tian, Ximin</creator><creator>Song, Yang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20230424</creationdate><title>Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input</title><author>Tian, Ximin ; Song, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Elevation</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Prediction models</topic><topic>random wave</topic><topic>Rolling motion</topic><topic>Ship motion</topic><topic>Ships</topic><topic>short-term prediction</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Ximin</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Ximin</au><au>Song, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input</atitle><jtitle>Applied sciences</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>5298</spage><pages>5298-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>There is a response relationship between wave and ship motion. Based on the LSTM neural network, the mapping relationship between the wave elevation and ship roll motion is established. The wave elevation and ship motion duration data obtained by the CFD simulation are used to predict ship roll motion with different input data schemes. The results show that the prediction scheme considering the wave elevation input can predict ship roll motion. Compared with the direct prediction scheme based on the roll data input, the prediction scheme considering the wave elevation input factor can greatly improve the prediction accuracy and effective advance prediction time. Different wave elevation data inputs have different prediction effects. The advance prediction duration will increase with the increase in the input wave elevation position and the ship distance. The simultaneous input of multi-point wave elevation greatly increases the amount of data, allowing the trained model to utilize a greater data depth. This not only improves the advance prediction duration of the prediction model, but it also enhances the robustness of the model, making the prediction results more stable.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13095298</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-04, Vol.13 (9), p.5298 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ad2f1f842b2d4d50a1776981c6144028 |
source | Publicly Available Content Database |
subjects | Accuracy Elevation Kalman filters Machine learning Methods Neural networks Optimization algorithms Prediction models random wave Rolling motion Ship motion Ships short-term prediction Wavelet transforms |
title | Machine Learning for Short-Term Prediction of Ship Motion Combined with Wave Input |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Short-Term%20Prediction%20of%20Ship%20Motion%20Combined%20with%20Wave%20Input&rft.jtitle=Applied%20sciences&rft.au=Tian,%20Ximin&rft.date=2023-04-24&rft.volume=13&rft.issue=9&rft.spage=5298&rft.pages=5298-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13095298&rft_dat=%3Cgale_doaj_%3EA752313197%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-66624d0198109f048f9a1fde2d1bb15da71eb2e0a479ce6dbebfb2ac3138a40c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812407680&rft_id=info:pmid/&rft_galeid=A752313197&rfr_iscdi=true |