Loading…

Removal of Fluoride and Arsenate from Aqueous Solutions by Aluminum-Modified Guava Seeds

The contamination of groundwater by arsenic and fluoride is a major problem worldwide, causing diseases in the population that uses these waters for their consumption. Therefore, the removal of these types of pollutants from groundwater is a very important issue. In this work, the removal of arsenat...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-10, Vol.8 (10), p.1807
Main Authors: Ramos-Vargas, Sarai, Alfaro-Cuevas-Villanueva, Ruth, Huirache-Acuña, Rafael, Cortés-Martínez, Raúl
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contamination of groundwater by arsenic and fluoride is a major problem worldwide, causing diseases in the population that uses these waters for their consumption. Therefore, the removal of these types of pollutants from groundwater is a very important issue. In this work, the removal of arsenate and fluoride from aqueous solutions by using aluminum-modified guava seeds (Al-GSs) was evaluated. Batch-type adsorption experiments were carried out with aqueous solutions of As(V) and F− and Al-GSs. The kinetic and equilibrium parameters of adsorption were determined, as well as the effects of adsorbent dose and pH. The adsorbent was characterized by scanning electron microscopy and infrared spectroscopy in order to determine its morphology and the functional groups present in the material. The results showed that hydroxyl and carboxyl are the main groups involved in the adsorption of As(V) and F−. The fluoride adsorption kinetics indicate that the equilibrium time was reached at 150 min and it can be described by the Lagergren model, while for As(V) the equilibrium time was lower (120 min) and the kinetic data were fitted well to the pseudo-second-order model. The Langmuir-Freundlich model can describe the adsorption equilibrium data in all cases. The fluoride adsorption capacity by Al-GS was 0.3445 mg/g, and for As(V) it was 4 mg/g. It can be established that the removal of arsenates and fluoride in Al-GSs is due to chemisorption on a heterogeneous surface.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8101807