Loading…
Effects of Two Soluble ACE2-Fc Variants on Blood Pressure and Albuminuria in Hypertensive Mice: Research Letter
Background: Angiotensin-converting enzyme 2 (ACE2) hydrolyzes angiotensin (Ang) II to Ang-(1-7), promoting vasodilatation, and inhibiting oxidative stress and inflammation. Plasma membrane ACE2 is the receptor for all known SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) viral variants....
Saved in:
Published in: | Canadian journal of kidney health and disease 2023-01, Vol.10, p.20543581231207146-20543581231207146 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background:
Angiotensin-converting enzyme 2 (ACE2) hydrolyzes angiotensin (Ang) II to Ang-(1-7), promoting vasodilatation, and inhibiting oxidative stress and inflammation. Plasma membrane ACE2 is the receptor for all known SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) viral variants. In COVID-19 infection, soluble ACE2 variants may act as decoys to bind and neutralize the coronavirus, reducing its tissue infectivity. Furthermore, soluble ACE2 variants have been proposed as potential therapeutics for kidney disease and hypertensive disorders.
Objective:
Soluble ACE2 variants conjugated to human Fc domains and selected for high-potency viral SARS-CoV-2 neutralization were prepared and evaluated for ACE2 activity in vitro. Lead candidates were then tested for systemic ACE2 activity, stability, and effects on blood pressure and albuminuria in mice with Ang II-induced hypertension.
Methods:
ACE2 activity of 10 soluble ACE2 variants was first assessed in cell-free conditions using a fluorogenic substrate, or by Ang II hydrolysis to Ang-(1-7). Hypertension was induced in male or female mice by implantation of osmotic minipumps containing Ang II. Two lead ACE2 variants were injected intravenously (i.v.) into hypertensive mice, followed by measurements of blood pressure (tail-cuff plethysmography), albuminuria, and tissue ACE2 activity and protein (immunoblots).
Results:
Soluble ACE2-Fc variants demonstrated significant ACE2 enzymatic activity, with kinetics comparable with human recombinant ACE2. In hypertensive mice, single dose i.v. injection of ACE2-Fc variant K (10 mg/kg) significantly decreased systolic blood pressure at 24 hours, with partial lowering sustained to 48 hours, and tendency to reduce albuminuria at 72 hours. By contrast, ACE2-Fc variant I had no effect on blood pressure or albuminuria in hypertensive mice; ACE2-Fc variant K was detected by immunoblotting in plasma, kidney, heart, lung, liver, and spleen lysates 72 hours after injection, associated with significantly increased ACE2 activity in all tissues except kidney and spleen. Angiotensin-converting enzyme 2-Fc variant I had no effect on plasma ACE2 activity.
Conclusions:
Soluble ACE2-Fc variant K reduces blood pressure and tends to lower albuminuria in hypertensive mice. Furthermore, soluble ACE2-Fc variant K has prolonged tissue retention, associated with increased tissue ACE2 activity. The results support further studies directed at the therapeutic potential of soluble ACE2 |
---|---|
ISSN: | 2054-3581 2054-3581 |
DOI: | 10.1177/20543581231207146 |