Loading…

Mercury emissions from polish pulverized coalfired boiler

The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR) and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue ga...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2017-01, Vol.14, p.2008
Main Authors: Wichliński, Michał, Wielgosz, Grzegorz, Kobyłecki, Rafał
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR) and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue gas desulfurization (FGD) system, as well as investigation of mercury content in the combustion products, i.e. fly ash, slag, FGD product (gypsum) and FGD effluents (waste). Within the framework of the present study the concentration of mercury vapor in the exhaust gas was also investigated. The analysis was performed using Lumex RA-915+ spectrometer with an attachment (RP-91C). The measurements were carried out at three locations, i.e. before the electrostatic precipitator (ESP), downstream the ESP, and downstream the wet FGD plant. Design of the measurement system allowed to determine both forms of mercury in the flue gas (Hg0 and Hg2+) at all measurement locations.Based on the measurement results the balance of mercury for a pulverized coal (PC) boiler was calculated and the amount of mercury was assessed both in the input solids (fuel and sorbent), as well as the gaseous and solids products (flue gas, slag, ash, gypsum and FGD waste).
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/20171402008