Loading…

A Novel Transformer-Based Attention Network for Image Dehazing

Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature e...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-04, Vol.22 (9), p.3428
Main Authors: Gao, Guanlei, Cao, Jie, Bao, Chun, Hao, Qun, Ma, Aoqi, Li, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663
cites cdi_FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663
container_end_page
container_issue 9
container_start_page 3428
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Gao, Guanlei
Cao, Jie
Bao, Chun
Hao, Qun
Ma, Aoqi
Li, Gang
description Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature extraction. Although the performance is greatly improved compared with the prior-based methods, the performance in extracting detailed information is inferior. In this paper, we proposed an image dehazing model built with a convolutional neural network and Transformer, called Transformer for image dehazing (TID). First, we propose a Transformer-based channel attention module (TCAM), using a spatial attention module as its supplement. These two modules form an attention module that enhances channel and spatial features. Second, we use a multiscale parallel residual network as the backbone, which can extract feature information of different scales to achieve feature fusion. We experimented on the RESIDE dataset, and then conducted extensive comparisons and ablation studies with state-of-the-art methods. Experimental results show that our proposed method effectively improves the quality of the restored image, and it is also better than the existing attention modules in performance.
doi_str_mv 10.3390/s22093428
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad51a6fa3cc14665b6cf53fbe362729e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781610859</galeid><doaj_id>oai_doaj_org_article_ad51a6fa3cc14665b6cf53fbe362729e</doaj_id><sourcerecordid>A781610859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzgkGJ7bMe-VFrK10pVuZSz5Tjj1EsSFztbBL8eL1tWLRrJtmaeee3Xmqp6SckpgCbvMmNEA2fqUXVMOeONKonH985H1bOcN4QwAFBPqyMQQlNK1XF1tqov4y2O9VWyc_YxTZia9zZjX6-WBeclxLm-xOVnTN_rUq7Xkx2w_oDX9neYh-fVE2_HjC_u9pPq26ePV-dfmouvn9fnq4vGCaKWhosSVHnuOg681dZDK3SLrfOEOeWAiK4F3isUVFjnKfHaShCsLB6khJNqvdfto92YmxQmm36ZaIP5m4hpMDYtwY1obC-old6Cc5RLKTrpvADfIUjWMo1F62yvdbPtJuxdMZns-ED0YWUO12aIt0ZTImTbFoE3dwIp_thiXswUssNxtDPGbTZMFkoLAFbQ1_-hm7hNc_mqHQWUEK121OmeGmwxEGYfy72uRI9TcHFGH0p-1SoqKVFCl4a3-waXYs4J_eH1lJjdSJjDSBT21X27B_LfDMAf6Aqucw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663100982</pqid></control><display><type>article</type><title>A Novel Transformer-Based Attention Network for Image Dehazing</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gao, Guanlei ; Cao, Jie ; Bao, Chun ; Hao, Qun ; Ma, Aoqi ; Li, Gang</creator><creatorcontrib>Gao, Guanlei ; Cao, Jie ; Bao, Chun ; Hao, Qun ; Ma, Aoqi ; Li, Gang</creatorcontrib><description>Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature extraction. Although the performance is greatly improved compared with the prior-based methods, the performance in extracting detailed information is inferior. In this paper, we proposed an image dehazing model built with a convolutional neural network and Transformer, called Transformer for image dehazing (TID). First, we propose a Transformer-based channel attention module (TCAM), using a spatial attention module as its supplement. These two modules form an attention module that enhances channel and spatial features. Second, we use a multiscale parallel residual network as the backbone, which can extract feature information of different scales to achieve feature fusion. We experimented on the RESIDE dataset, and then conducted extensive comparisons and ablation studies with state-of-the-art methods. Experimental results show that our proposed method effectively improves the quality of the restored image, and it is also better than the existing attention modules in performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22093428</identifier><identifier>PMID: 35591118</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ablation ; Computational linguistics ; convolutional neural network ; image dehazing ; Image quality ; Language processing ; Light ; Methods ; Natural language interfaces ; Neural networks ; Parameter estimation ; Remote sensing ; Transformer</subject><ispartof>Sensors (Basel, Switzerland), 2022-04, Vol.22 (9), p.3428</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663</citedby><cites>FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2663100982/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2663100982?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35591118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Guanlei</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Hao, Qun</creatorcontrib><creatorcontrib>Ma, Aoqi</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><title>A Novel Transformer-Based Attention Network for Image Dehazing</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature extraction. Although the performance is greatly improved compared with the prior-based methods, the performance in extracting detailed information is inferior. In this paper, we proposed an image dehazing model built with a convolutional neural network and Transformer, called Transformer for image dehazing (TID). First, we propose a Transformer-based channel attention module (TCAM), using a spatial attention module as its supplement. These two modules form an attention module that enhances channel and spatial features. Second, we use a multiscale parallel residual network as the backbone, which can extract feature information of different scales to achieve feature fusion. We experimented on the RESIDE dataset, and then conducted extensive comparisons and ablation studies with state-of-the-art methods. Experimental results show that our proposed method effectively improves the quality of the restored image, and it is also better than the existing attention modules in performance.</description><subject>Ablation</subject><subject>Computational linguistics</subject><subject>convolutional neural network</subject><subject>image dehazing</subject><subject>Image quality</subject><subject>Language processing</subject><subject>Light</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Remote sensing</subject><subject>Transformer</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzgkGJ7bMe-VFrK10pVuZSz5Tjj1EsSFztbBL8eL1tWLRrJtmaeee3Xmqp6SckpgCbvMmNEA2fqUXVMOeONKonH985H1bOcN4QwAFBPqyMQQlNK1XF1tqov4y2O9VWyc_YxTZia9zZjX6-WBeclxLm-xOVnTN_rUq7Xkx2w_oDX9neYh-fVE2_HjC_u9pPq26ePV-dfmouvn9fnq4vGCaKWhosSVHnuOg681dZDK3SLrfOEOeWAiK4F3isUVFjnKfHaShCsLB6khJNqvdfto92YmxQmm36ZaIP5m4hpMDYtwY1obC-old6Cc5RLKTrpvADfIUjWMo1F62yvdbPtJuxdMZns-ED0YWUO12aIt0ZTImTbFoE3dwIp_thiXswUssNxtDPGbTZMFkoLAFbQ1_-hm7hNc_mqHQWUEK121OmeGmwxEGYfy72uRI9TcHFGH0p-1SoqKVFCl4a3-waXYs4J_eH1lJjdSJjDSBT21X27B_LfDMAf6Aqucw</recordid><startdate>20220430</startdate><enddate>20220430</enddate><creator>Gao, Guanlei</creator><creator>Cao, Jie</creator><creator>Bao, Chun</creator><creator>Hao, Qun</creator><creator>Ma, Aoqi</creator><creator>Li, Gang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220430</creationdate><title>A Novel Transformer-Based Attention Network for Image Dehazing</title><author>Gao, Guanlei ; Cao, Jie ; Bao, Chun ; Hao, Qun ; Ma, Aoqi ; Li, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Computational linguistics</topic><topic>convolutional neural network</topic><topic>image dehazing</topic><topic>Image quality</topic><topic>Language processing</topic><topic>Light</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Remote sensing</topic><topic>Transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Guanlei</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Hao, Qun</creatorcontrib><creatorcontrib>Ma, Aoqi</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Guanlei</au><au>Cao, Jie</au><au>Bao, Chun</au><au>Hao, Qun</au><au>Ma, Aoqi</au><au>Li, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Transformer-Based Attention Network for Image Dehazing</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-04-30</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>3428</spage><pages>3428-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature extraction. Although the performance is greatly improved compared with the prior-based methods, the performance in extracting detailed information is inferior. In this paper, we proposed an image dehazing model built with a convolutional neural network and Transformer, called Transformer for image dehazing (TID). First, we propose a Transformer-based channel attention module (TCAM), using a spatial attention module as its supplement. These two modules form an attention module that enhances channel and spatial features. Second, we use a multiscale parallel residual network as the backbone, which can extract feature information of different scales to achieve feature fusion. We experimented on the RESIDE dataset, and then conducted extensive comparisons and ablation studies with state-of-the-art methods. Experimental results show that our proposed method effectively improves the quality of the restored image, and it is also better than the existing attention modules in performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35591118</pmid><doi>10.3390/s22093428</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-04, Vol.22 (9), p.3428
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ad51a6fa3cc14665b6cf53fbe362729e
source Publicly Available Content (ProQuest); PubMed Central
subjects Ablation
Computational linguistics
convolutional neural network
image dehazing
Image quality
Language processing
Light
Methods
Natural language interfaces
Neural networks
Parameter estimation
Remote sensing
Transformer
title A Novel Transformer-Based Attention Network for Image Dehazing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Transformer-Based%20Attention%20Network%20for%20Image%20Dehazing&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Gao,%20Guanlei&rft.date=2022-04-30&rft.volume=22&rft.issue=9&rft.spage=3428&rft.pages=3428-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22093428&rft_dat=%3Cgale_doaj_%3EA781610859%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-4545418f4cb43479af37597e7cf02c8c305b734d8e515acf10f9a6352a63f3663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2663100982&rft_id=info:pmid/35591118&rft_galeid=A781610859&rfr_iscdi=true