Loading…
An Efficient DA-Net Architecture for Lung Nodule Segmentation
A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance amo...
Saved in:
Published in: | Mathematics (Basel) 2021-07, Vol.9 (13), p.1457 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3 |
container_end_page | |
container_issue | 13 |
container_start_page | 1457 |
container_title | Mathematics (Basel) |
container_volume | 9 |
creator | Maqsood, Muazzam Yasmin, Sadaf Mehmood, Irfan Bukhari, Maryam Kim, Mucheol |
description | A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score. |
doi_str_mv | 10.3390/math9131457 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad766eca762d4469af07f7bb509b1742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ad766eca762d4469af07f7bb509b1742</doaj_id><sourcerecordid>2549479737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqT35BxY8ymqyyebj4KHUqoVSD-o5vM1Hu6Xd1Gz24L83WpG-y3vMG2aGQeia4DtKFb7fQ9ooQgmrxRkaVVUlSpHx85P7Ek36fovzZKJkaoQepl0x9741retS8TgtVy4V02g2bXImDdEVPsRiOXTrYhXssHPFm1vvMxdSG7ordOFh17vJ3x6jj6f5--ylXL4-L2bTZWkoZ6msnZDcSk8sBc4xl7VlvLJeSsAW80YB415ZwYSqhARZQwOMGpN_BDDxdIwWR10bYKsPsd1D_NIBWv0LhLjWEFNrdk6DFZw7AyIbMMYVeCy8aJoaq4YIVmWtm6PWIYbPwfVJb8MQuxxfVzVTOYOgIrNujywTQ99H5_9dCdY_deuTuuk3W2hwZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549479737</pqid></control><display><type>article</type><title>An Efficient DA-Net Architecture for Lung Nodule Segmentation</title><source>Publicly Available Content Database</source><creator>Maqsood, Muazzam ; Yasmin, Sadaf ; Mehmood, Irfan ; Bukhari, Maryam ; Kim, Mucheol</creator><creatorcontrib>Maqsood, Muazzam ; Yasmin, Sadaf ; Mehmood, Irfan ; Bukhari, Maryam ; Kim, Mucheol</creatorcontrib><description>A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9131457</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atrous convolutions ; Cancer ; Cluster analysis ; Clustering ; Computed tomography ; Cysts ; DA-Net ; Feature extraction ; Image processing ; Image segmentation ; lung nodule segmentation ; Machine learning ; Mathematics ; Medical imaging ; Morphology ; Neural networks ; Nodules ; online diagnosis ; Optimization techniques ; unsupervised learning ; Vector quantization</subject><ispartof>Mathematics (Basel), 2021-07, Vol.9 (13), p.1457</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3</citedby><cites>FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2549479737/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2549479737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Maqsood, Muazzam</creatorcontrib><creatorcontrib>Yasmin, Sadaf</creatorcontrib><creatorcontrib>Mehmood, Irfan</creatorcontrib><creatorcontrib>Bukhari, Maryam</creatorcontrib><creatorcontrib>Kim, Mucheol</creatorcontrib><title>An Efficient DA-Net Architecture for Lung Nodule Segmentation</title><title>Mathematics (Basel)</title><description>A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score.</description><subject>Atrous convolutions</subject><subject>Cancer</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computed tomography</subject><subject>Cysts</subject><subject>DA-Net</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>lung nodule segmentation</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Nodules</subject><subject>online diagnosis</subject><subject>Optimization techniques</subject><subject>unsupervised learning</subject><subject>Vector quantization</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqT35BxY8ymqyyebj4KHUqoVSD-o5vM1Hu6Xd1Gz24L83WpG-y3vMG2aGQeia4DtKFb7fQ9ooQgmrxRkaVVUlSpHx85P7Ek36fovzZKJkaoQepl0x9741retS8TgtVy4V02g2bXImDdEVPsRiOXTrYhXssHPFm1vvMxdSG7ordOFh17vJ3x6jj6f5--ylXL4-L2bTZWkoZ6msnZDcSk8sBc4xl7VlvLJeSsAW80YB415ZwYSqhARZQwOMGpN_BDDxdIwWR10bYKsPsd1D_NIBWv0LhLjWEFNrdk6DFZw7AyIbMMYVeCy8aJoaq4YIVmWtm6PWIYbPwfVJb8MQuxxfVzVTOYOgIrNujywTQ99H5_9dCdY_deuTuuk3W2hwZw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Maqsood, Muazzam</creator><creator>Yasmin, Sadaf</creator><creator>Mehmood, Irfan</creator><creator>Bukhari, Maryam</creator><creator>Kim, Mucheol</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20210701</creationdate><title>An Efficient DA-Net Architecture for Lung Nodule Segmentation</title><author>Maqsood, Muazzam ; Yasmin, Sadaf ; Mehmood, Irfan ; Bukhari, Maryam ; Kim, Mucheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atrous convolutions</topic><topic>Cancer</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computed tomography</topic><topic>Cysts</topic><topic>DA-Net</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>lung nodule segmentation</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Nodules</topic><topic>online diagnosis</topic><topic>Optimization techniques</topic><topic>unsupervised learning</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maqsood, Muazzam</creatorcontrib><creatorcontrib>Yasmin, Sadaf</creatorcontrib><creatorcontrib>Mehmood, Irfan</creatorcontrib><creatorcontrib>Bukhari, Maryam</creatorcontrib><creatorcontrib>Kim, Mucheol</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maqsood, Muazzam</au><au>Yasmin, Sadaf</au><au>Mehmood, Irfan</au><au>Bukhari, Maryam</au><au>Kim, Mucheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient DA-Net Architecture for Lung Nodule Segmentation</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>13</issue><spage>1457</spage><pages>1457-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9131457</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2021-07, Vol.9 (13), p.1457 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ad766eca762d4469af07f7bb509b1742 |
source | Publicly Available Content Database |
subjects | Atrous convolutions Cancer Cluster analysis Clustering Computed tomography Cysts DA-Net Feature extraction Image processing Image segmentation lung nodule segmentation Machine learning Mathematics Medical imaging Morphology Neural networks Nodules online diagnosis Optimization techniques unsupervised learning Vector quantization |
title | An Efficient DA-Net Architecture for Lung Nodule Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20DA-Net%20Architecture%20for%20Lung%20Nodule%20Segmentation&rft.jtitle=Mathematics%20(Basel)&rft.au=Maqsood,%20Muazzam&rft.date=2021-07-01&rft.volume=9&rft.issue=13&rft.spage=1457&rft.pages=1457-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9131457&rft_dat=%3Cproquest_doaj_%3E2549479737%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-5e786d8f1d3a660685d462df88a0d06b9a46f9d7479278a85aba43ccd061a01f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549479737&rft_id=info:pmid/&rfr_iscdi=true |