Loading…

Genome-Wide Analysis of Purple Acid Phosphatase Genes in Brassica rapa and Their Association with Pollen Development and Phosphorus Deprivation Stress

PAPs (purple acid phosphatases) belong to the metallo-phosphoesterase superfamily and play important roles in developmental processes, phosphorus foraging, and recycling. However, the specific functions of BrPAPs in Brassica rapa are poorly understood. In this study, 39 BrPAPs were identified and di...

Full description

Saved in:
Bibliographic Details
Published in:Horticulturae 2021-10, Vol.7 (10), p.363
Main Authors: Cai, Yongfang, Qi, Jiao, Li, Chun, Miao, Kehui, Jiang, Baixue, Yang, Xiaoshuang, Han, Wenyu, Wang, Yang, Gao, Jing, Dong, Xiangshu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PAPs (purple acid phosphatases) belong to the metallo-phosphoesterase superfamily and play important roles in developmental processes, phosphorus foraging, and recycling. However, the specific functions of BrPAPs in Brassica rapa are poorly understood. In this study, 39 BrPAPs were identified and divided into three major clades and nine subgroups. In 8 of the 39 BrPAPs, some invariant amino acid residues were lost or shifted. Based on an expression profiling analysis, BrPAP11, 14, 20, 24, 29, and 34 were specifically expressed in fertile floral buds, indicating their critical roles during pollen development. A total of 21 BrPAPs responded to Pi deprivation in either shoots or roots. Of these, BrPAP4, 5, 19, and 21 were upregulated in roots under Pi depravation conditions, while BrPAP12 was upregulated in the roots in normal conditions. BrPAP28 was upregulated in shoots under Pi depravation conditions, indicating its function shifted compared with its Arabidopsis homolog, AtPAP26. The present work contributes to further investigation of BrPAPs as candidate genes for genetic improvement studies of low phosphorus tolerance as well as for creating male sterile lines based on gene editing methods in Brassica rapa.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae7100363