Loading…

Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks

This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is...

Full description

Saved in:
Bibliographic Details
Published in:Revista Facultad de Ingeniería 2014-03 (70), p.34-44
Main Authors: Arcila Zea, Jorge, Riveros Jerez, Carlos Alberto, Rivero Jerez, Javier Enrique
Format: Article
Language:eng ; spa
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383
container_end_page 44
container_issue 70
container_start_page 34
container_title Revista Facultad de Ingeniería
container_volume
creator Arcila Zea, Jorge
Riveros Jerez, Carlos Alberto
Rivero Jerez, Javier Enrique
description This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.
doi_str_mv 10.17533/udea.redin.16382
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89</doaj_id><sourcerecordid>1622615925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</originalsourceid><addsrcrecordid>eNo9UctOHDEQtKIgZQN8QG4-cpmN3-M5IkQSJAQXOFt-tJHJzHhjzwiRS3493tkop5K6q6tKXQh9oWRPe8n51zWA3RcIad5TxTX7gHZMMNYxLcRHtCOUkU4xTj6hz7W-EiK1InqH_jweljSl33ZJecY5Ygd2wnYO2OdxnWZcwR9XFcdc2mw6jMnOHnAoKS7HgwJpbjsPx5PZF1gAuzWNLclLxWttgK_LkmLyyY74AdaywfKWy896gc6iHStc_sNz9Pzt9unmR3f_-P3u5vq-81RQ2SnnXOip0kpLHXpHggMlgYKNgcohCht6YUHygYfBUcddpNx7TkOvGOOan6O7k27I9tUcSppseTfZJrMNcnkxtoX0IxgbtCBWMSFpFKIXQwjMOy9IexiJemhaVyetQ8m_VqiLmVL1MI52hrxWQ5ulaqmYbFR6ovqSay0Q_1tTYrbizLE4sxVntuL4XywKkLc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622615925</pqid></control><display><type>article</type><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><source>Publicly Available Content Database</source><creator>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</creator><creatorcontrib>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</creatorcontrib><description>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</description><identifier>ISSN: 0120-6230</identifier><identifier>EISSN: 2422-2844</identifier><identifier>DOI: 10.17533/udea.redin.16382</identifier><language>eng ; spa</language><publisher>Universidad de Antioquia</publisher><subject>Artificial neural networks ; artificial neural networks (ANN) ; Beams (structural) ; Buildings ; Drift ; framed structures ; Learning theory ; Neural networks ; Optimization ; Reinforced concrete ; seismic design</subject><ispartof>Revista Facultad de Ingeniería, 2014-03 (70), p.34-44</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</cites><orcidid>0000-0002-7128-4165 ; 0000-0001-9524-374X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids></links><search><creatorcontrib>Arcila Zea, Jorge</creatorcontrib><creatorcontrib>Riveros Jerez, Carlos Alberto</creatorcontrib><creatorcontrib>Rivero Jerez, Javier Enrique</creatorcontrib><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><title>Revista Facultad de Ingeniería</title><description>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</description><subject>Artificial neural networks</subject><subject>artificial neural networks (ANN)</subject><subject>Beams (structural)</subject><subject>Buildings</subject><subject>Drift</subject><subject>framed structures</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Reinforced concrete</subject><subject>seismic design</subject><issn>0120-6230</issn><issn>2422-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9UctOHDEQtKIgZQN8QG4-cpmN3-M5IkQSJAQXOFt-tJHJzHhjzwiRS3493tkop5K6q6tKXQh9oWRPe8n51zWA3RcIad5TxTX7gHZMMNYxLcRHtCOUkU4xTj6hz7W-EiK1InqH_jweljSl33ZJecY5Ygd2wnYO2OdxnWZcwR9XFcdc2mw6jMnOHnAoKS7HgwJpbjsPx5PZF1gAuzWNLclLxWttgK_LkmLyyY74AdaywfKWy896gc6iHStc_sNz9Pzt9unmR3f_-P3u5vq-81RQ2SnnXOip0kpLHXpHggMlgYKNgcohCht6YUHygYfBUcddpNx7TkOvGOOan6O7k27I9tUcSppseTfZJrMNcnkxtoX0IxgbtCBWMSFpFKIXQwjMOy9IexiJemhaVyetQ8m_VqiLmVL1MI52hrxWQ5ulaqmYbFR6ovqSay0Q_1tTYrbizLE4sxVntuL4XywKkLc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Arcila Zea, Jorge</creator><creator>Riveros Jerez, Carlos Alberto</creator><creator>Rivero Jerez, Javier Enrique</creator><general>Universidad de Antioquia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7128-4165</orcidid><orcidid>https://orcid.org/0000-0001-9524-374X</orcidid></search><sort><creationdate>20140301</creationdate><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><author>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>artificial neural networks (ANN)</topic><topic>Beams (structural)</topic><topic>Buildings</topic><topic>Drift</topic><topic>framed structures</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Reinforced concrete</topic><topic>seismic design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcila Zea, Jorge</creatorcontrib><creatorcontrib>Riveros Jerez, Carlos Alberto</creatorcontrib><creatorcontrib>Rivero Jerez, Javier Enrique</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Revista Facultad de Ingeniería</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcila Zea, Jorge</au><au>Riveros Jerez, Carlos Alberto</au><au>Rivero Jerez, Javier Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</atitle><jtitle>Revista Facultad de Ingeniería</jtitle><date>2014-03-01</date><risdate>2014</risdate><issue>70</issue><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0120-6230</issn><eissn>2422-2844</eissn><abstract>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</abstract><pub>Universidad de Antioquia</pub><doi>10.17533/udea.redin.16382</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7128-4165</orcidid><orcidid>https://orcid.org/0000-0001-9524-374X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-6230
ispartof Revista Facultad de Ingeniería, 2014-03 (70), p.34-44
issn 0120-6230
2422-2844
language eng ; spa
recordid cdi_doaj_primary_oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89
source Publicly Available Content Database
subjects Artificial neural networks
artificial neural networks (ANN)
Beams (structural)
Buildings
Drift
framed structures
Learning theory
Neural networks
Optimization
Reinforced concrete
seismic design
title Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20beam%20and%20column%20sections%20for%20compliance%20drift%20of%20reinforced%20concrete%20buildings%20using%20Artificial%20Neural%20Networks&rft.jtitle=Revista%20Facultad%20de%20Ingenier%C3%ADa&rft.au=Arcila%20Zea,%20Jorge&rft.date=2014-03-01&rft.issue=70&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0120-6230&rft.eissn=2422-2844&rft_id=info:doi/10.17533/udea.redin.16382&rft_dat=%3Cproquest_doaj_%3E1622615925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622615925&rft_id=info:pmid/&rfr_iscdi=true