Loading…
Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks
This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is...
Saved in:
Published in: | Revista Facultad de Ingeniería 2014-03 (70), p.34-44 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | eng ; spa |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383 |
container_end_page | 44 |
container_issue | 70 |
container_start_page | 34 |
container_title | Revista Facultad de Ingeniería |
container_volume | |
creator | Arcila Zea, Jorge Riveros Jerez, Carlos Alberto Rivero Jerez, Javier Enrique |
description | This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures. |
doi_str_mv | 10.17533/udea.redin.16382 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89</doaj_id><sourcerecordid>1622615925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</originalsourceid><addsrcrecordid>eNo9UctOHDEQtKIgZQN8QG4-cpmN3-M5IkQSJAQXOFt-tJHJzHhjzwiRS3493tkop5K6q6tKXQh9oWRPe8n51zWA3RcIad5TxTX7gHZMMNYxLcRHtCOUkU4xTj6hz7W-EiK1InqH_jweljSl33ZJecY5Ygd2wnYO2OdxnWZcwR9XFcdc2mw6jMnOHnAoKS7HgwJpbjsPx5PZF1gAuzWNLclLxWttgK_LkmLyyY74AdaywfKWy896gc6iHStc_sNz9Pzt9unmR3f_-P3u5vq-81RQ2SnnXOip0kpLHXpHggMlgYKNgcohCht6YUHygYfBUcddpNx7TkOvGOOan6O7k27I9tUcSppseTfZJrMNcnkxtoX0IxgbtCBWMSFpFKIXQwjMOy9IexiJemhaVyetQ8m_VqiLmVL1MI52hrxWQ5ulaqmYbFR6ovqSay0Q_1tTYrbizLE4sxVntuL4XywKkLc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622615925</pqid></control><display><type>article</type><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><source>Publicly Available Content Database</source><creator>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</creator><creatorcontrib>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</creatorcontrib><description>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</description><identifier>ISSN: 0120-6230</identifier><identifier>EISSN: 2422-2844</identifier><identifier>DOI: 10.17533/udea.redin.16382</identifier><language>eng ; spa</language><publisher>Universidad de Antioquia</publisher><subject>Artificial neural networks ; artificial neural networks (ANN) ; Beams (structural) ; Buildings ; Drift ; framed structures ; Learning theory ; Neural networks ; Optimization ; Reinforced concrete ; seismic design</subject><ispartof>Revista Facultad de Ingeniería, 2014-03 (70), p.34-44</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</cites><orcidid>0000-0002-7128-4165 ; 0000-0001-9524-374X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids></links><search><creatorcontrib>Arcila Zea, Jorge</creatorcontrib><creatorcontrib>Riveros Jerez, Carlos Alberto</creatorcontrib><creatorcontrib>Rivero Jerez, Javier Enrique</creatorcontrib><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><title>Revista Facultad de Ingeniería</title><description>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</description><subject>Artificial neural networks</subject><subject>artificial neural networks (ANN)</subject><subject>Beams (structural)</subject><subject>Buildings</subject><subject>Drift</subject><subject>framed structures</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Reinforced concrete</subject><subject>seismic design</subject><issn>0120-6230</issn><issn>2422-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9UctOHDEQtKIgZQN8QG4-cpmN3-M5IkQSJAQXOFt-tJHJzHhjzwiRS3493tkop5K6q6tKXQh9oWRPe8n51zWA3RcIad5TxTX7gHZMMNYxLcRHtCOUkU4xTj6hz7W-EiK1InqH_jweljSl33ZJecY5Ygd2wnYO2OdxnWZcwR9XFcdc2mw6jMnOHnAoKS7HgwJpbjsPx5PZF1gAuzWNLclLxWttgK_LkmLyyY74AdaywfKWy896gc6iHStc_sNz9Pzt9unmR3f_-P3u5vq-81RQ2SnnXOip0kpLHXpHggMlgYKNgcohCht6YUHygYfBUcddpNx7TkOvGOOan6O7k27I9tUcSppseTfZJrMNcnkxtoX0IxgbtCBWMSFpFKIXQwjMOy9IexiJemhaVyetQ8m_VqiLmVL1MI52hrxWQ5ulaqmYbFR6ovqSay0Q_1tTYrbizLE4sxVntuL4XywKkLc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Arcila Zea, Jorge</creator><creator>Riveros Jerez, Carlos Alberto</creator><creator>Rivero Jerez, Javier Enrique</creator><general>Universidad de Antioquia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7128-4165</orcidid><orcidid>https://orcid.org/0000-0001-9524-374X</orcidid></search><sort><creationdate>20140301</creationdate><title>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</title><author>Arcila Zea, Jorge ; Riveros Jerez, Carlos Alberto ; Rivero Jerez, Javier Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>artificial neural networks (ANN)</topic><topic>Beams (structural)</topic><topic>Buildings</topic><topic>Drift</topic><topic>framed structures</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Reinforced concrete</topic><topic>seismic design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcila Zea, Jorge</creatorcontrib><creatorcontrib>Riveros Jerez, Carlos Alberto</creatorcontrib><creatorcontrib>Rivero Jerez, Javier Enrique</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Revista Facultad de Ingeniería</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcila Zea, Jorge</au><au>Riveros Jerez, Carlos Alberto</au><au>Rivero Jerez, Javier Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks</atitle><jtitle>Revista Facultad de Ingeniería</jtitle><date>2014-03-01</date><risdate>2014</risdate><issue>70</issue><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0120-6230</issn><eissn>2422-2844</eissn><abstract>This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections of beams and reinforced concrete columns for symmetric framed buildings with 1-6 floors taking into consideration the minimum requirements of the NSR-10 related with drift and seismic design. It is also studied the sensitivity of drift to the values of dimensions of beamsand columns providing a better understanding of this relationship in order to obtain optimal designs more quickly, easily and reliably as compared to current used procedures.</abstract><pub>Universidad de Antioquia</pub><doi>10.17533/udea.redin.16382</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7128-4165</orcidid><orcidid>https://orcid.org/0000-0001-9524-374X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0120-6230 |
ispartof | Revista Facultad de Ingeniería, 2014-03 (70), p.34-44 |
issn | 0120-6230 2422-2844 |
language | eng ; spa |
recordid | cdi_doaj_primary_oai_doaj_org_article_ad840a62451f44749dd2cbc406080f89 |
source | Publicly Available Content Database |
subjects | Artificial neural networks artificial neural networks (ANN) Beams (structural) Buildings Drift framed structures Learning theory Neural networks Optimization Reinforced concrete seismic design |
title | Optimization of beam and column sections for compliance drift of reinforced concrete buildings using Artificial Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20beam%20and%20column%20sections%20for%20compliance%20drift%20of%20reinforced%20concrete%20buildings%20using%20Artificial%20Neural%20Networks&rft.jtitle=Revista%20Facultad%20de%20Ingenier%C3%ADa&rft.au=Arcila%20Zea,%20Jorge&rft.date=2014-03-01&rft.issue=70&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0120-6230&rft.eissn=2422-2844&rft_id=info:doi/10.17533/udea.redin.16382&rft_dat=%3Cproquest_doaj_%3E1622615925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1415-6bbbd71686858d7b0dbe65e1eafd159f4ad74ae5393d9b1b3bf13cc31d7622383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1622615925&rft_id=info:pmid/&rfr_iscdi=true |