Loading…
Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications
Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed ou...
Saved in:
Published in: | Micromachines (Basel) 2022-12, Vol.13 (12), p.2244 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2244 |
container_title | Micromachines (Basel) |
container_volume | 13 |
creator | Zagni, Nicolò Verzellesi, Giovanni Chini, Alessandro |
description | Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with
≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the
-independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate. |
doi_str_mv | 10.3390/mi13122244 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745930604</galeid><doaj_id>oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3</doaj_id><sourcerecordid>A745930604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</originalsourceid><addsrcrecordid>eNpdkt1qFDEUxwex2NL2xgeQAW9EmG2-M7kRlrVuF1q9WUG8Cdkks2aZmYzJjOC79Rn6TJ51a22bkHNCzu_8cxJOUbzGaEapQhddwBQTQhh7UZwQJEklhPj28tH-uDjPeYdgSKnAvCqOqeBcckZPiu9r3w0-mXFKvlr1zg8eTD-Wiymlvf8YMsRziH0Z-hLNMC_vbrty3i7N5wtY5dXlzTqXTUwlX5bzYWiDNSPg-aw4akyb_fm9Py2-frpcL66q6y_L1WJ-XVkm0VgJaji3jNU1Vg1xjmNumrq2zEpnG0QlQcw4STCSG0kk5Uw6iixB1qkGGHparA66LpqdHlLoTPqtown670FMW23SGGzrtXGKSkpqZjFjwitjzMYrh6XZIEIcBa0PB61h2nTeWfiBZNonok8jffiht_GXVrKGCgUIvLsXSPHn5POou5Ctb1vT-zhlTSSvMaJ1TQB9-wzdxSn18FV7SkgumVBAzQ7U1sADQt9EuNfCdL4LNva-CXA-l4wrigRikPD-kGBTzDn55qF6jPS-ZfT_lgH4zeP3PqD_GoT-ASOSubo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756757469</pqid></control><display><type>article</type><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</creator><creatorcontrib>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</creatorcontrib><description>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with
≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the
-independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13122244</identifier><identifier>PMID: 36557543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum gallium nitrides ; current collapse ; Design and construction ; Dynamic response ; Fe doping ; Gallium nitrides ; GaN HEMTs ; High electron mobility transistors ; Integrated circuit fabrication ; Iron ; Materials ; Methods ; Point defects ; Power amplifiers ; Simulation ; T-independent process ; TCAD simulations ; Temperature</subject><ispartof>Micromachines (Basel), 2022-12, Vol.13 (12), p.2244</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</cites><orcidid>0000-0003-2454-1883 ; 0000-0002-5865-271X ; 0000-0001-5770-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756757469/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756757469?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36557543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagni, Nicolò</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with
≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the
-independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</description><subject>Aluminum gallium nitrides</subject><subject>current collapse</subject><subject>Design and construction</subject><subject>Dynamic response</subject><subject>Fe doping</subject><subject>Gallium nitrides</subject><subject>GaN HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit fabrication</subject><subject>Iron</subject><subject>Materials</subject><subject>Methods</subject><subject>Point defects</subject><subject>Power amplifiers</subject><subject>Simulation</subject><subject>T-independent process</subject><subject>TCAD simulations</subject><subject>Temperature</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEUxwex2NL2xgeQAW9EmG2-M7kRlrVuF1q9WUG8Cdkks2aZmYzJjOC79Rn6TJ51a22bkHNCzu_8cxJOUbzGaEapQhddwBQTQhh7UZwQJEklhPj28tH-uDjPeYdgSKnAvCqOqeBcckZPiu9r3w0-mXFKvlr1zg8eTD-Wiymlvf8YMsRziH0Z-hLNMC_vbrty3i7N5wtY5dXlzTqXTUwlX5bzYWiDNSPg-aw4akyb_fm9Py2-frpcL66q6y_L1WJ-XVkm0VgJaji3jNU1Vg1xjmNumrq2zEpnG0QlQcw4STCSG0kk5Uw6iixB1qkGGHparA66LpqdHlLoTPqtown670FMW23SGGzrtXGKSkpqZjFjwitjzMYrh6XZIEIcBa0PB61h2nTeWfiBZNonok8jffiht_GXVrKGCgUIvLsXSPHn5POou5Ctb1vT-zhlTSSvMaJ1TQB9-wzdxSn18FV7SkgumVBAzQ7U1sADQt9EuNfCdL4LNva-CXA-l4wrigRikPD-kGBTzDn55qF6jPS-ZfT_lgH4zeP3PqD_GoT-ASOSubo</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Zagni, Nicolò</creator><creator>Verzellesi, Giovanni</creator><creator>Chini, Alessandro</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid></search><sort><creationdate>20221217</creationdate><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><author>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitrides</topic><topic>current collapse</topic><topic>Design and construction</topic><topic>Dynamic response</topic><topic>Fe doping</topic><topic>Gallium nitrides</topic><topic>GaN HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit fabrication</topic><topic>Iron</topic><topic>Materials</topic><topic>Methods</topic><topic>Point defects</topic><topic>Power amplifiers</topic><topic>Simulation</topic><topic>T-independent process</topic><topic>TCAD simulations</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagni, Nicolò</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagni, Nicolò</au><au>Verzellesi, Giovanni</au><au>Chini, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2022-12-17</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>2244</spage><pages>2244-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with
≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the
-independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36557543</pmid><doi>10.3390/mi13122244</doi><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2022-12, Vol.13 (12), p.2244 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3 |
source | PubMed (Medline); Access via ProQuest (Open Access) |
subjects | Aluminum gallium nitrides current collapse Design and construction Dynamic response Fe doping Gallium nitrides GaN HEMTs High electron mobility transistors Integrated circuit fabrication Iron Materials Methods Point defects Power amplifiers Simulation T-independent process TCAD simulations Temperature |
title | Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Independent%20Current%20Dispersion%20in%200.15%20%CE%BCm%20AlGaN/GaN%20HEMTs%20for%205G%20Applications&rft.jtitle=Micromachines%20(Basel)&rft.au=Zagni,%20Nicol%C3%B2&rft.date=2022-12-17&rft.volume=13&rft.issue=12&rft.spage=2244&rft.pages=2244-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13122244&rft_dat=%3Cgale_doaj_%3EA745930604%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756757469&rft_id=info:pmid/36557543&rft_galeid=A745930604&rfr_iscdi=true |