Loading…

Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications

Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed ou...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-12, Vol.13 (12), p.2244
Main Authors: Zagni, Nicolò, Verzellesi, Giovanni, Chini, Alessandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3
container_end_page
container_issue 12
container_start_page 2244
container_title Micromachines (Basel)
container_volume 13
creator Zagni, Nicolò
Verzellesi, Giovanni
Chini, Alessandro
description Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with ≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the -independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.
doi_str_mv 10.3390/mi13122244
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745930604</galeid><doaj_id>oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3</doaj_id><sourcerecordid>A745930604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</originalsourceid><addsrcrecordid>eNpdkt1qFDEUxwex2NL2xgeQAW9EmG2-M7kRlrVuF1q9WUG8Cdkks2aZmYzJjOC79Rn6TJ51a22bkHNCzu_8cxJOUbzGaEapQhddwBQTQhh7UZwQJEklhPj28tH-uDjPeYdgSKnAvCqOqeBcckZPiu9r3w0-mXFKvlr1zg8eTD-Wiymlvf8YMsRziH0Z-hLNMC_vbrty3i7N5wtY5dXlzTqXTUwlX5bzYWiDNSPg-aw4akyb_fm9Py2-frpcL66q6y_L1WJ-XVkm0VgJaji3jNU1Vg1xjmNumrq2zEpnG0QlQcw4STCSG0kk5Uw6iixB1qkGGHparA66LpqdHlLoTPqtown670FMW23SGGzrtXGKSkpqZjFjwitjzMYrh6XZIEIcBa0PB61h2nTeWfiBZNonok8jffiht_GXVrKGCgUIvLsXSPHn5POou5Ctb1vT-zhlTSSvMaJ1TQB9-wzdxSn18FV7SkgumVBAzQ7U1sADQt9EuNfCdL4LNva-CXA-l4wrigRikPD-kGBTzDn55qF6jPS-ZfT_lgH4zeP3PqD_GoT-ASOSubo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756757469</pqid></control><display><type>article</type><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</creator><creatorcontrib>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</creatorcontrib><description>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with ≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the -independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13122244</identifier><identifier>PMID: 36557543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum gallium nitrides ; current collapse ; Design and construction ; Dynamic response ; Fe doping ; Gallium nitrides ; GaN HEMTs ; High electron mobility transistors ; Integrated circuit fabrication ; Iron ; Materials ; Methods ; Point defects ; Power amplifiers ; Simulation ; T-independent process ; TCAD simulations ; Temperature</subject><ispartof>Micromachines (Basel), 2022-12, Vol.13 (12), p.2244</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</cites><orcidid>0000-0003-2454-1883 ; 0000-0002-5865-271X ; 0000-0001-5770-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756757469/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756757469?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36557543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zagni, Nicolò</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with ≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the -independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</description><subject>Aluminum gallium nitrides</subject><subject>current collapse</subject><subject>Design and construction</subject><subject>Dynamic response</subject><subject>Fe doping</subject><subject>Gallium nitrides</subject><subject>GaN HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit fabrication</subject><subject>Iron</subject><subject>Materials</subject><subject>Methods</subject><subject>Point defects</subject><subject>Power amplifiers</subject><subject>Simulation</subject><subject>T-independent process</subject><subject>TCAD simulations</subject><subject>Temperature</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEUxwex2NL2xgeQAW9EmG2-M7kRlrVuF1q9WUG8Cdkks2aZmYzJjOC79Rn6TJ51a22bkHNCzu_8cxJOUbzGaEapQhddwBQTQhh7UZwQJEklhPj28tH-uDjPeYdgSKnAvCqOqeBcckZPiu9r3w0-mXFKvlr1zg8eTD-Wiymlvf8YMsRziH0Z-hLNMC_vbrty3i7N5wtY5dXlzTqXTUwlX5bzYWiDNSPg-aw4akyb_fm9Py2-frpcL66q6y_L1WJ-XVkm0VgJaji3jNU1Vg1xjmNumrq2zEpnG0QlQcw4STCSG0kk5Uw6iixB1qkGGHparA66LpqdHlLoTPqtown670FMW23SGGzrtXGKSkpqZjFjwitjzMYrh6XZIEIcBa0PB61h2nTeWfiBZNonok8jffiht_GXVrKGCgUIvLsXSPHn5POou5Ctb1vT-zhlTSSvMaJ1TQB9-wzdxSn18FV7SkgumVBAzQ7U1sADQt9EuNfCdL4LNva-CXA-l4wrigRikPD-kGBTzDn55qF6jPS-ZfT_lgH4zeP3PqD_GoT-ASOSubo</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Zagni, Nicolò</creator><creator>Verzellesi, Giovanni</creator><creator>Chini, Alessandro</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid></search><sort><creationdate>20221217</creationdate><title>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</title><author>Zagni, Nicolò ; Verzellesi, Giovanni ; Chini, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitrides</topic><topic>current collapse</topic><topic>Design and construction</topic><topic>Dynamic response</topic><topic>Fe doping</topic><topic>Gallium nitrides</topic><topic>GaN HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit fabrication</topic><topic>Iron</topic><topic>Materials</topic><topic>Methods</topic><topic>Point defects</topic><topic>Power amplifiers</topic><topic>Simulation</topic><topic>T-independent process</topic><topic>TCAD simulations</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagni, Nicolò</creatorcontrib><creatorcontrib>Verzellesi, Giovanni</creatorcontrib><creatorcontrib>Chini, Alessandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagni, Nicolò</au><au>Verzellesi, Giovanni</au><au>Chini, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2022-12-17</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>2244</spage><pages>2244-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with ≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1-2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the -independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36557543</pmid><doi>10.3390/mi13122244</doi><orcidid>https://orcid.org/0000-0003-2454-1883</orcidid><orcidid>https://orcid.org/0000-0002-5865-271X</orcidid><orcidid>https://orcid.org/0000-0001-5770-6512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2022-12, Vol.13 (12), p.2244
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ad9373284c1446e9aaabe9d17ab022d3
source PubMed (Medline); Access via ProQuest (Open Access)
subjects Aluminum gallium nitrides
current collapse
Design and construction
Dynamic response
Fe doping
Gallium nitrides
GaN HEMTs
High electron mobility transistors
Integrated circuit fabrication
Iron
Materials
Methods
Point defects
Power amplifiers
Simulation
T-independent process
TCAD simulations
Temperature
title Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Independent%20Current%20Dispersion%20in%200.15%20%CE%BCm%20AlGaN/GaN%20HEMTs%20for%205G%20Applications&rft.jtitle=Micromachines%20(Basel)&rft.au=Zagni,%20Nicol%C3%B2&rft.date=2022-12-17&rft.volume=13&rft.issue=12&rft.spage=2244&rft.pages=2244-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13122244&rft_dat=%3Cgale_doaj_%3EA745930604%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-63a55c448819f2dd515af88c4c7dcf037204ad72107b7273547d30c20cd9fc7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756757469&rft_id=info:pmid/36557543&rft_galeid=A745930604&rfr_iscdi=true