Loading…
A Second-Order Finite-Difference Method for Derivative-Free Optimization
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of obje...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2024, Vol.2024, p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2024 |
creator | Chen, Qian Wang, Peng Zhu, Detong |
description | In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations. |
doi_str_mv | 10.1155/2024/1947996 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_adb82fc6b039402db930f2224a5873a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_adb82fc6b039402db930f2224a5873a5</doaj_id><sourcerecordid>2973766345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhjdGEwly8wds4lFX-rXt9khAhATDQT03_ZhKCWyxu2D01wuCHj3N5M2TdyZPll1jdI9xWfYJIqyPJRNS8rOsQyhmBRNVef67cyIvs17TLBFCmFS0kqiTTQb5M9hYu2KeHKR8HOrQQjEK3kOC2kL-BO0iutzHlI8ghZ1uww6KcQLI55s2rMPXPon1VXbh9aqB3ml2s9fxw8twUszmj9PhYFZYhmhbVEQIgxhzloM2BoTkxlZGM4GQEVYIznxZComxdtr4SoP2HAB5I0oBHGg3mx57XdRLtUlhrdOnijqonyCmN6VTG-wKlHamIt5yg6hkiDgjKfKEEKbLSlBd7rtujl2bFN-30LRqGbep3r-viBRUcE7Zgbo7UjbFpkng_65ipA7q1UG9Oqnf47dHfBFqpz_C__Q3C2SB7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973766345</pqid></control><display><type>article</type><title>A Second-Order Finite-Difference Method for Derivative-Free Optimization</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Qian ; Wang, Peng ; Zhu, Detong</creator><contributor>Huang, Nan-Jing ; Nan-Jing Huang</contributor><creatorcontrib>Chen, Qian ; Wang, Peng ; Zhu, Detong ; Huang, Nan-Jing ; Nan-Jing Huang</creatorcontrib><description>In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2024/1947996</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Approximation ; Convex analysis ; Finite difference method ; Hessian matrices ; Mathematical analysis ; Methods ; Optimization</subject><ispartof>Journal of mathematics (Hidawi), 2024, Vol.2024, p.1-12</ispartof><rights>Copyright © 2024 Qian Chen et al.</rights><rights>Copyright © 2024 Qian Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3</citedby><cites>FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3</cites><orcidid>0000-0002-5421-3920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2973766345/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2973766345?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Huang, Nan-Jing</contributor><contributor>Nan-Jing Huang</contributor><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhu, Detong</creatorcontrib><title>A Second-Order Finite-Difference Method for Derivative-Free Optimization</title><title>Journal of mathematics (Hidawi)</title><description>In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Convex analysis</subject><subject>Finite difference method</subject><subject>Hessian matrices</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Optimization</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1PAjEQhjdGEwly8wds4lFX-rXt9khAhATDQT03_ZhKCWyxu2D01wuCHj3N5M2TdyZPll1jdI9xWfYJIqyPJRNS8rOsQyhmBRNVef67cyIvs17TLBFCmFS0kqiTTQb5M9hYu2KeHKR8HOrQQjEK3kOC2kL-BO0iutzHlI8ghZ1uww6KcQLI55s2rMPXPon1VXbh9aqB3ml2s9fxw8twUszmj9PhYFZYhmhbVEQIgxhzloM2BoTkxlZGM4GQEVYIznxZComxdtr4SoP2HAB5I0oBHGg3mx57XdRLtUlhrdOnijqonyCmN6VTG-wKlHamIt5yg6hkiDgjKfKEEKbLSlBd7rtujl2bFN-30LRqGbep3r-viBRUcE7Zgbo7UjbFpkng_65ipA7q1UG9Oqnf47dHfBFqpz_C__Q3C2SB7A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Qian</creator><creator>Wang, Peng</creator><creator>Zhu, Detong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5421-3920</orcidid></search><sort><creationdate>2024</creationdate><title>A Second-Order Finite-Difference Method for Derivative-Free Optimization</title><author>Chen, Qian ; Wang, Peng ; Zhu, Detong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Convex analysis</topic><topic>Finite difference method</topic><topic>Hessian matrices</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhu, Detong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qian</au><au>Wang, Peng</au><au>Zhu, Detong</au><au>Huang, Nan-Jing</au><au>Nan-Jing Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Second-Order Finite-Difference Method for Derivative-Free Optimization</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2024/1947996</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5421-3920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2024, Vol.2024, p.1-12 |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_adb82fc6b039402db930f2224a5873a5 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Algorithms Approximation Convex analysis Finite difference method Hessian matrices Mathematical analysis Methods Optimization |
title | A Second-Order Finite-Difference Method for Derivative-Free Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Second-Order%20Finite-Difference%20Method%20for%20Derivative-Free%20Optimization&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Chen,%20Qian&rft.date=2024&rft.volume=2024&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2024/1947996&rft_dat=%3Cproquest_doaj_%3E2973766345%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-8277b044dc6eabbe796bc8ba4700b7c7764f557911adabf8aeaf6ee0fb757e6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973766345&rft_id=info:pmid/&rfr_iscdi=true |