Loading…

A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface

Sea surface emissivity (SSE) is a key variable in the estimation of sea surface temperature and the sea surface radiation budget. A physical base SSE model with adequate accuracy and acceptable computational efficiency is highly desired. This paper develops a Monte Carlo ray-tracing model to compute...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-05, Vol.19 (9), p.2166
Main Authors: Cheng, Jie, Cheng, Xiaolong, Meng, Xiangchen, Zhou, Guanhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sea surface emissivity (SSE) is a key variable in the estimation of sea surface temperature and the sea surface radiation budget. A physical base SSE model with adequate accuracy and acceptable computational efficiency is highly desired. This paper develops a Monte Carlo ray-tracing model to compute the SSE of a wind-roughened sea surface. The adoption of a two-dimensional continuous surface model and averaging the two polarization components in advance before ray-tracing gives the model acceptable computational efficiency. The developed model can output the contributions of direct emission and the reflected component to the effective emissivity. The contribution of the reflected component to the effective emissivity reaches 0.035 at an 80° emission angle for a wind speed larger than 10 m/s. The emissivity spectra and channel emissivities collected from two field campaigns and one set of outdoor measurements are used to validate the developed model. Statistical results indicate that the absolute value of bias or difference is less than 0.5% when the view angle is less than 65°, which means the retrieval accuracy of sea surface temperature (SST) is guaranteed from the view of SSE. When the view angle increases, the accuracy of the developed model degraded, especially at the view angle of 85°. Without considering this view angle, the absolute value of bias or difference is less than 0.016, and the root mean square difference (RMSD) is less than 0.018.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19092166