Loading…
The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon
To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was propo...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.41986-41992 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3 |
container_end_page | 41992 |
container_issue | |
container_start_page | 41986 |
container_title | IEEE access |
container_volume | 10 |
creator | Zhang, Jing Liu, Ding Tang, Qin-Wei |
description | To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field. |
doi_str_mv | 10.1109/ACCESS.2022.3168021 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9758760</ieee_id><doaj_id>oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046</doaj_id><sourcerecordid>2655855707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</originalsourceid><addsrcrecordid>eNpNUUtP4zAQjlastAj4BVws7TllbNePHCE8FqktSGWPK8t1xuAS4mKHA_vrMQQh5jIPfY-Rvqo6pjCjFJqT07a9WK9nDBibcSo1MPqj2mdUNjUXXO59m39VRzlvoZQuJ6H2q393D0ja1YqcI-7IAm0awnBfn9mMHVliP5aN3KboMOfSsQtuDHEg0ZP2f3QPyfb5MZBlHKJLr3m0fR8GJOvQBxeHw-qnLwA8-uwH1d_Li7v2T724ubpuTxe1Y1qPtVYb50F2QmDXaNuB5kpS9FQi76TiXKJzc_BKNHTjPWykt5JTC0A9NIj8oLqedLtot2aXwpNNrybaYD4OMd0bm8bgejS2Q9ow5ZnVfs7nsNHM6-IrgEsBc1m0fk9auxSfXzCPZhtf0lDeN0wKoYVQoAqKTyiXYs4J_ZcrBfMei5liMe-xmM9YCut4YgVE_GI0Smglgb8BoEyINA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655855707</pqid></control><display><type>article</type><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</creator><creatorcontrib>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</creatorcontrib><description>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168021</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; CNN deep learning ; Convolution ; Convolutional neural networks ; Czochralski monocrystalline silicon ; Deep learning ; Heating systems ; Image classification ; Machine learning ; Melting ; melting process ; Polysilicon ; prediction of the melting process ; Silicon ; Surface treatment</subject><ispartof>IEEE access, 2022, Vol.10, p.41986-41992</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</cites><orcidid>0000-0003-1300-7335 ; 0000-0002-2070-9661 ; 0000-0001-7021-1717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9758760$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27607,27897,27898,27899,54905</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><creatorcontrib>Tang, Qin-Wei</creatorcontrib><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><title>IEEE access</title><addtitle>Access</addtitle><description>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</description><subject>Artificial neural networks</subject><subject>CNN deep learning</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Czochralski monocrystalline silicon</subject><subject>Deep learning</subject><subject>Heating systems</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Melting</subject><subject>melting process</subject><subject>Polysilicon</subject><subject>prediction of the melting process</subject><subject>Silicon</subject><subject>Surface treatment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtP4zAQjlastAj4BVws7TllbNePHCE8FqktSGWPK8t1xuAS4mKHA_vrMQQh5jIPfY-Rvqo6pjCjFJqT07a9WK9nDBibcSo1MPqj2mdUNjUXXO59m39VRzlvoZQuJ6H2q393D0ja1YqcI-7IAm0awnBfn9mMHVliP5aN3KboMOfSsQtuDHEg0ZP2f3QPyfb5MZBlHKJLr3m0fR8GJOvQBxeHw-qnLwA8-uwH1d_Li7v2T724ubpuTxe1Y1qPtVYb50F2QmDXaNuB5kpS9FQi76TiXKJzc_BKNHTjPWykt5JTC0A9NIj8oLqedLtot2aXwpNNrybaYD4OMd0bm8bgejS2Q9ow5ZnVfs7nsNHM6-IrgEsBc1m0fk9auxSfXzCPZhtf0lDeN0wKoYVQoAqKTyiXYs4J_ZcrBfMei5liMe-xmM9YCut4YgVE_GI0Smglgb8BoEyINA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Jing</creator><creator>Liu, Ding</creator><creator>Tang, Qin-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1300-7335</orcidid><orcidid>https://orcid.org/0000-0002-2070-9661</orcidid><orcidid>https://orcid.org/0000-0001-7021-1717</orcidid></search><sort><creationdate>2022</creationdate><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><author>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>CNN deep learning</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Czochralski monocrystalline silicon</topic><topic>Deep learning</topic><topic>Heating systems</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Melting</topic><topic>melting process</topic><topic>Polysilicon</topic><topic>prediction of the melting process</topic><topic>Silicon</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><creatorcontrib>Tang, Qin-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Liu, Ding</au><au>Tang, Qin-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>41986</spage><epage>41992</epage><pages>41986-41992</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168021</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1300-7335</orcidid><orcidid>https://orcid.org/0000-0002-2070-9661</orcidid><orcidid>https://orcid.org/0000-0001-7021-1717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.41986-41992 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046 |
source | IEEE Xplore Open Access Journals |
subjects | Artificial neural networks CNN deep learning Convolution Convolutional neural networks Czochralski monocrystalline silicon Deep learning Heating systems Image classification Machine learning Melting melting process Polysilicon prediction of the melting process Silicon Surface treatment |
title | The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T00%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CNN%20Deep%20Learning-Based%20Melting%20Process%20Prediction%20of%20Czochralski%20Monocrystalline%20Silicon&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Jing&rft.date=2022&rft.volume=10&rft.spage=41986&rft.epage=41992&rft.pages=41986-41992&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168021&rft_dat=%3Cproquest_doaj_%3E2655855707%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655855707&rft_id=info:pmid/&rft_ieee_id=9758760&rfr_iscdi=true |