Loading…

The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon

To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was propo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.41986-41992
Main Authors: Zhang, Jing, Liu, Ding, Tang, Qin-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3
container_end_page 41992
container_issue
container_start_page 41986
container_title IEEE access
container_volume 10
creator Zhang, Jing
Liu, Ding
Tang, Qin-Wei
description To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.
doi_str_mv 10.1109/ACCESS.2022.3168021
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9758760</ieee_id><doaj_id>oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046</doaj_id><sourcerecordid>2655855707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</originalsourceid><addsrcrecordid>eNpNUUtP4zAQjlastAj4BVws7TllbNePHCE8FqktSGWPK8t1xuAS4mKHA_vrMQQh5jIPfY-Rvqo6pjCjFJqT07a9WK9nDBibcSo1MPqj2mdUNjUXXO59m39VRzlvoZQuJ6H2q393D0ja1YqcI-7IAm0awnBfn9mMHVliP5aN3KboMOfSsQtuDHEg0ZP2f3QPyfb5MZBlHKJLr3m0fR8GJOvQBxeHw-qnLwA8-uwH1d_Li7v2T724ubpuTxe1Y1qPtVYb50F2QmDXaNuB5kpS9FQi76TiXKJzc_BKNHTjPWykt5JTC0A9NIj8oLqedLtot2aXwpNNrybaYD4OMd0bm8bgejS2Q9ow5ZnVfs7nsNHM6-IrgEsBc1m0fk9auxSfXzCPZhtf0lDeN0wKoYVQoAqKTyiXYs4J_ZcrBfMei5liMe-xmM9YCut4YgVE_GI0Smglgb8BoEyINA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655855707</pqid></control><display><type>article</type><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</creator><creatorcontrib>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</creatorcontrib><description>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168021</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; CNN deep learning ; Convolution ; Convolutional neural networks ; Czochralski monocrystalline silicon ; Deep learning ; Heating systems ; Image classification ; Machine learning ; Melting ; melting process ; Polysilicon ; prediction of the melting process ; Silicon ; Surface treatment</subject><ispartof>IEEE access, 2022, Vol.10, p.41986-41992</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</cites><orcidid>0000-0003-1300-7335 ; 0000-0002-2070-9661 ; 0000-0001-7021-1717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9758760$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27607,27897,27898,27899,54905</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><creatorcontrib>Tang, Qin-Wei</creatorcontrib><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><title>IEEE access</title><addtitle>Access</addtitle><description>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</description><subject>Artificial neural networks</subject><subject>CNN deep learning</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Czochralski monocrystalline silicon</subject><subject>Deep learning</subject><subject>Heating systems</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Melting</subject><subject>melting process</subject><subject>Polysilicon</subject><subject>prediction of the melting process</subject><subject>Silicon</subject><subject>Surface treatment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtP4zAQjlastAj4BVws7TllbNePHCE8FqktSGWPK8t1xuAS4mKHA_vrMQQh5jIPfY-Rvqo6pjCjFJqT07a9WK9nDBibcSo1MPqj2mdUNjUXXO59m39VRzlvoZQuJ6H2q393D0ja1YqcI-7IAm0awnBfn9mMHVliP5aN3KboMOfSsQtuDHEg0ZP2f3QPyfb5MZBlHKJLr3m0fR8GJOvQBxeHw-qnLwA8-uwH1d_Li7v2T724ubpuTxe1Y1qPtVYb50F2QmDXaNuB5kpS9FQi76TiXKJzc_BKNHTjPWykt5JTC0A9NIj8oLqedLtot2aXwpNNrybaYD4OMd0bm8bgejS2Q9ow5ZnVfs7nsNHM6-IrgEsBc1m0fk9auxSfXzCPZhtf0lDeN0wKoYVQoAqKTyiXYs4J_ZcrBfMei5liMe-xmM9YCut4YgVE_GI0Smglgb8BoEyINA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Jing</creator><creator>Liu, Ding</creator><creator>Tang, Qin-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1300-7335</orcidid><orcidid>https://orcid.org/0000-0002-2070-9661</orcidid><orcidid>https://orcid.org/0000-0001-7021-1717</orcidid></search><sort><creationdate>2022</creationdate><title>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</title><author>Zhang, Jing ; Liu, Ding ; Tang, Qin-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>CNN deep learning</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Czochralski monocrystalline silicon</topic><topic>Deep learning</topic><topic>Heating systems</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Melting</topic><topic>melting process</topic><topic>Polysilicon</topic><topic>prediction of the melting process</topic><topic>Silicon</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Ding</creatorcontrib><creatorcontrib>Tang, Qin-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Liu, Ding</au><au>Tang, Qin-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>41986</spage><epage>41992</epage><pages>41986-41992</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To solve seeding failures due to the misjudgment caused by manual observation in the traditional melting process of Czochralski (CZ) monocrystalline silicon, a method for predicting the melting progress of CZ monocrystalline silicon based on Convolutional Neural Network (CNN) deep learning was proposed. The deep learning method and image classification of the melting process were combined. By taking CNN as the research object, the AlexNet network-based melting classification model was constructed. Meanwhile, the comparative analysis was performed by adjusting the number of AlexNet network convolution layers and the size of the convolution kernel. After several experiments, a CNN-based melting stage classification model was finally determined. Simulation results showed that the model could achieve higher accuracy when predicting the melting process. This paper focuses on the key technical issues such as polycrystalline silicon melting and temperature predication in the growth process of the monocrystalline silicon, and predicts the melting process of silicon materials, which lays the foundation for the quality improvement of monocrystalline silicon growth process in the semiconductor field.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168021</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1300-7335</orcidid><orcidid>https://orcid.org/0000-0002-2070-9661</orcidid><orcidid>https://orcid.org/0000-0001-7021-1717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.41986-41992
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ade1927f2a8f4340b82f85ed50365046
source IEEE Xplore Open Access Journals
subjects Artificial neural networks
CNN deep learning
Convolution
Convolutional neural networks
Czochralski monocrystalline silicon
Deep learning
Heating systems
Image classification
Machine learning
Melting
melting process
Polysilicon
prediction of the melting process
Silicon
Surface treatment
title The CNN Deep Learning-Based Melting Process Prediction of Czochralski Monocrystalline Silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T00%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CNN%20Deep%20Learning-Based%20Melting%20Process%20Prediction%20of%20Czochralski%20Monocrystalline%20Silicon&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Jing&rft.date=2022&rft.volume=10&rft.spage=41986&rft.epage=41992&rft.pages=41986-41992&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168021&rft_dat=%3Cproquest_doaj_%3E2655855707%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-87bcf06d55ed98ad083761ef16e3d67336ecc40f7591bff0b6fa631a001f09ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655855707&rft_id=info:pmid/&rft_ieee_id=9758760&rfr_iscdi=true