Loading…

Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients

Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality o...

Full description

Saved in:
Bibliographic Details
Published in:BioMedInformatics 2024-05, Vol.4 (2), p.1348-1362
Main Authors: Kyritsi, Aikaterini, Tagka, Anna, Stratigos, Alexander, Karalis, Vangelis D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3
container_end_page 1362
container_issue 2
container_start_page 1348
container_title BioMedInformatics
container_volume 4
creator Kyritsi, Aikaterini
Tagka, Anna
Stratigos, Alexander
Karalis, Vangelis D.
description Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.
doi_str_mv 10.3390/biomedinformatics4020074
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</doaj_id><sourcerecordid>oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsGj_Q456qOZjupv1Jq0fhYo96HmZTSY1ZZtIsiD15j93qyJePM3wzPAc3rcomOAXStX8svVxS9YHF9MWe28ycMl5BQfFSJaVmlQgy8M_-3ExznnDOZe6UrLWo-LjAc2LD8SWhCn4sGY-sOuuo7T2hs1i6NH0bE5f_t7nK7awFHrvdvvfs7nP59lvfYdpuFJmLfVvRIGtYrfLFPJA38kyDJY9xBD_oNUgHEz5tDhy2GUa_8yT4vn25ml2P1k-3i1m18uJEeUUJrYVVWlBQG24AV066QAd1VZJoUlIycEQaGrFdIiAAMBwBwYVWFOBcuqkWHx7bcRN85r8FtOuieibLxDTusE0ZNhRg5agck4gGgl1O0VVyhJazjVqDqUeXPrbZVLMOZH79Qne7Jtp_mtGfQLe7IoP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><source>DOAJ Directory of Open Access Journals</source><creator>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</creator><creatorcontrib>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</creatorcontrib><description>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</description><identifier>ISSN: 2673-7426</identifier><identifier>EISSN: 2673-7426</identifier><identifier>DOI: 10.3390/biomedinformatics4020074</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>allergic contact dermatitis ; machine learning ; multiple correspondence analysis ; polysensitization</subject><ispartof>BioMedInformatics, 2024-05, Vol.4 (2), p.1348-1362</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</cites><orcidid>0000-0002-0605-9084 ; 0000-0003-0492-0712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Kyritsi, Aikaterini</creatorcontrib><creatorcontrib>Tagka, Anna</creatorcontrib><creatorcontrib>Stratigos, Alexander</creatorcontrib><creatorcontrib>Karalis, Vangelis D.</creatorcontrib><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><title>BioMedInformatics</title><description>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</description><subject>allergic contact dermatitis</subject><subject>machine learning</subject><subject>multiple correspondence analysis</subject><subject>polysensitization</subject><issn>2673-7426</issn><issn>2673-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhhdRsGj_Q456qOZjupv1Jq0fhYo96HmZTSY1ZZtIsiD15j93qyJePM3wzPAc3rcomOAXStX8svVxS9YHF9MWe28ycMl5BQfFSJaVmlQgy8M_-3ExznnDOZe6UrLWo-LjAc2LD8SWhCn4sGY-sOuuo7T2hs1i6NH0bE5f_t7nK7awFHrvdvvfs7nP59lvfYdpuFJmLfVvRIGtYrfLFPJA38kyDJY9xBD_oNUgHEz5tDhy2GUa_8yT4vn25ml2P1k-3i1m18uJEeUUJrYVVWlBQG24AV066QAd1VZJoUlIycEQaGrFdIiAAMBwBwYVWFOBcuqkWHx7bcRN85r8FtOuieibLxDTusE0ZNhRg5agck4gGgl1O0VVyhJazjVqDqUeXPrbZVLMOZH79Qne7Jtp_mtGfQLe7IoP</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Kyritsi, Aikaterini</creator><creator>Tagka, Anna</creator><creator>Stratigos, Alexander</creator><creator>Karalis, Vangelis D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0605-9084</orcidid><orcidid>https://orcid.org/0000-0003-0492-0712</orcidid></search><sort><creationdate>20240517</creationdate><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><author>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>allergic contact dermatitis</topic><topic>machine learning</topic><topic>multiple correspondence analysis</topic><topic>polysensitization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyritsi, Aikaterini</creatorcontrib><creatorcontrib>Tagka, Anna</creatorcontrib><creatorcontrib>Stratigos, Alexander</creatorcontrib><creatorcontrib>Karalis, Vangelis D.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BioMedInformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyritsi, Aikaterini</au><au>Tagka, Anna</au><au>Stratigos, Alexander</au><au>Karalis, Vangelis D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</atitle><jtitle>BioMedInformatics</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>1348</spage><epage>1362</epage><pages>1348-1362</pages><issn>2673-7426</issn><eissn>2673-7426</eissn><abstract>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</abstract><pub>MDPI AG</pub><doi>10.3390/biomedinformatics4020074</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0605-9084</orcidid><orcidid>https://orcid.org/0000-0003-0492-0712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-7426
ispartof BioMedInformatics, 2024-05, Vol.4 (2), p.1348-1362
issn 2673-7426
2673-7426
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468
source DOAJ Directory of Open Access Journals
subjects allergic contact dermatitis
machine learning
multiple correspondence analysis
polysensitization
title Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20in%20Allergic%20Contact%20Dermatitis:%20Identifying%20(Dis)similarities%20between%20Polysensitized%20and%20Monosensitized%20Patients&rft.jtitle=BioMedInformatics&rft.au=Kyritsi,%20Aikaterini&rft.date=2024-05-17&rft.volume=4&rft.issue=2&rft.spage=1348&rft.epage=1362&rft.pages=1348-1362&rft.issn=2673-7426&rft.eissn=2673-7426&rft_id=info:doi/10.3390/biomedinformatics4020074&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ade47ff1aac249b5a36264b008a80468%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true