Loading…
Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients
Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality o...
Saved in:
Published in: | BioMedInformatics 2024-05, Vol.4 (2), p.1348-1362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3 |
container_end_page | 1362 |
container_issue | 2 |
container_start_page | 1348 |
container_title | BioMedInformatics |
container_volume | 4 |
creator | Kyritsi, Aikaterini Tagka, Anna Stratigos, Alexander Karalis, Vangelis D. |
description | Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field. |
doi_str_mv | 10.3390/biomedinformatics4020074 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</doaj_id><sourcerecordid>oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsGj_Q456qOZjupv1Jq0fhYo96HmZTSY1ZZtIsiD15j93qyJePM3wzPAc3rcomOAXStX8svVxS9YHF9MWe28ycMl5BQfFSJaVmlQgy8M_-3ExznnDOZe6UrLWo-LjAc2LD8SWhCn4sGY-sOuuo7T2hs1i6NH0bE5f_t7nK7awFHrvdvvfs7nP59lvfYdpuFJmLfVvRIGtYrfLFPJA38kyDJY9xBD_oNUgHEz5tDhy2GUa_8yT4vn25ml2P1k-3i1m18uJEeUUJrYVVWlBQG24AV066QAd1VZJoUlIycEQaGrFdIiAAMBwBwYVWFOBcuqkWHx7bcRN85r8FtOuieibLxDTusE0ZNhRg5agck4gGgl1O0VVyhJazjVqDqUeXPrbZVLMOZH79Qne7Jtp_mtGfQLe7IoP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><source>DOAJ Directory of Open Access Journals</source><creator>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</creator><creatorcontrib>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</creatorcontrib><description>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</description><identifier>ISSN: 2673-7426</identifier><identifier>EISSN: 2673-7426</identifier><identifier>DOI: 10.3390/biomedinformatics4020074</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>allergic contact dermatitis ; machine learning ; multiple correspondence analysis ; polysensitization</subject><ispartof>BioMedInformatics, 2024-05, Vol.4 (2), p.1348-1362</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</cites><orcidid>0000-0002-0605-9084 ; 0000-0003-0492-0712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Kyritsi, Aikaterini</creatorcontrib><creatorcontrib>Tagka, Anna</creatorcontrib><creatorcontrib>Stratigos, Alexander</creatorcontrib><creatorcontrib>Karalis, Vangelis D.</creatorcontrib><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><title>BioMedInformatics</title><description>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</description><subject>allergic contact dermatitis</subject><subject>machine learning</subject><subject>multiple correspondence analysis</subject><subject>polysensitization</subject><issn>2673-7426</issn><issn>2673-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kU1LAzEQhhdRsGj_Q456qOZjupv1Jq0fhYo96HmZTSY1ZZtIsiD15j93qyJePM3wzPAc3rcomOAXStX8svVxS9YHF9MWe28ycMl5BQfFSJaVmlQgy8M_-3ExznnDOZe6UrLWo-LjAc2LD8SWhCn4sGY-sOuuo7T2hs1i6NH0bE5f_t7nK7awFHrvdvvfs7nP59lvfYdpuFJmLfVvRIGtYrfLFPJA38kyDJY9xBD_oNUgHEz5tDhy2GUa_8yT4vn25ml2P1k-3i1m18uJEeUUJrYVVWlBQG24AV066QAd1VZJoUlIycEQaGrFdIiAAMBwBwYVWFOBcuqkWHx7bcRN85r8FtOuieibLxDTusE0ZNhRg5agck4gGgl1O0VVyhJazjVqDqUeXPrbZVLMOZH79Qne7Jtp_mtGfQLe7IoP</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Kyritsi, Aikaterini</creator><creator>Tagka, Anna</creator><creator>Stratigos, Alexander</creator><creator>Karalis, Vangelis D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0605-9084</orcidid><orcidid>https://orcid.org/0000-0003-0492-0712</orcidid></search><sort><creationdate>20240517</creationdate><title>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</title><author>Kyritsi, Aikaterini ; Tagka, Anna ; Stratigos, Alexander ; Karalis, Vangelis D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>allergic contact dermatitis</topic><topic>machine learning</topic><topic>multiple correspondence analysis</topic><topic>polysensitization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyritsi, Aikaterini</creatorcontrib><creatorcontrib>Tagka, Anna</creatorcontrib><creatorcontrib>Stratigos, Alexander</creatorcontrib><creatorcontrib>Karalis, Vangelis D.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BioMedInformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyritsi, Aikaterini</au><au>Tagka, Anna</au><au>Stratigos, Alexander</au><au>Karalis, Vangelis D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients</atitle><jtitle>BioMedInformatics</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>1348</spage><epage>1362</epage><pages>1348-1362</pages><issn>2673-7426</issn><eissn>2673-7426</eissn><abstract>Background: Allergic contact dermatitis (ACD) is a delayed hypersensitivity reaction occurring in sensitized individuals due to exposure to allergens. Polysensitization, defined as positive reactions to multiple unrelated haptens, increases the risk of ACD development and affects patients’ quality of life. The aim of this study is to apply machine learning in order to analyze the association between ACD, polysensitization, individual susceptibility, and patients’ characteristics. Methods: Patch test results and demographics from 400 ACD patients (Study protocol Nr. 3765/2022), categorized as polysensitized or monosensitized, were analyzed. Classic statistical analysis and multiple correspondence analysis (MCA) were utilized to explore relationships among variables. Results: The findings revealed significant associations between patient characteristics and ACD patterns, with hand dermatitis showing the strongest correlation. MCA provided insights into the complex interplay of demographic and clinical factors influencing ACD prevalence. Conclusion: Overall, this study highlights the potential of machine learning in unveiling hidden patterns within dermatological data, paving the way for future advancements in the field.</abstract><pub>MDPI AG</pub><doi>10.3390/biomedinformatics4020074</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0605-9084</orcidid><orcidid>https://orcid.org/0000-0003-0492-0712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-7426 |
ispartof | BioMedInformatics, 2024-05, Vol.4 (2), p.1348-1362 |
issn | 2673-7426 2673-7426 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ade47ff1aac249b5a36264b008a80468 |
source | DOAJ Directory of Open Access Journals |
subjects | allergic contact dermatitis machine learning multiple correspondence analysis polysensitization |
title | Machine Learning in Allergic Contact Dermatitis: Identifying (Dis)similarities between Polysensitized and Monosensitized Patients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20in%20Allergic%20Contact%20Dermatitis:%20Identifying%20(Dis)similarities%20between%20Polysensitized%20and%20Monosensitized%20Patients&rft.jtitle=BioMedInformatics&rft.au=Kyritsi,%20Aikaterini&rft.date=2024-05-17&rft.volume=4&rft.issue=2&rft.spage=1348&rft.epage=1362&rft.pages=1348-1362&rft.issn=2673-7426&rft.eissn=2673-7426&rft_id=info:doi/10.3390/biomedinformatics4020074&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ade47ff1aac249b5a36264b008a80468%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1654-db176d4149c0c486f2f4afe9d3218e12204ce48eb15200e444c0f4ca34dc743f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |