Loading…
Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling
nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To...
Saved in:
Published in: | International journal of molecular sciences 2020-07, Vol.21 (13), p.4707 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3 |
container_end_page | |
container_issue | 13 |
container_start_page | 4707 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Qian, Heying Li, Gang Zhao, Guodong Liu, Mingzhu Xu, Anying |
description | nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety,
; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections. |
doi_str_mv | 10.3390/ijms21134707 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02</doaj_id><sourcerecordid>2421118322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi1ERcvCjTOyxIUDof5I4uSCxK6grNSFStBeLX-Md71K4tZOEL3w2_F222rLyR77mXfsmRehN5R85Lwlp37bJ0YpLwURz9AJLRkrCKnF84P9MXqZ0pYQxlnVvkDHnNWcMFGdoL8rGJUOnTd4sVFRmRGiT2r0YcDB4XEDeOXtehp30Tz0-vYP7kP0-EpFD6OHhJXLOXjef7-4wsvBgblLvkx-WOOzRbH6WcxVAosfKo2AL2JwvsvAK3TkVJfg9f06Q5dfv_xafCvOf5wtF5_PC8NbLgoK1DbGGFVZVza8qoTQpKyB0lLnqKaam8pRDa51LeiMCGp0aUhDCWhr-Qwt97o2qK28jr5X8VYG5eXdQYhrqeLoTQdSWVC1FXVT1qa0VigrLBNEgahIbXMLZ-jTXut60j1YA8MYVfdE9OnN4DdyHX5LwetWUJIF3t8LxHAzQRpl75OBrlMDhClJVuZ50oazXa13_6HbMMUht2pHEc4alkc5Qx_2lIkhpQju8TGUyJ1J5KFJMv728AOP8IMr-D8BH7j_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420328226</pqid></control><display><type>article</type><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</creator><creatorcontrib>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</creatorcontrib><description>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety,
; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21134707</identifier><identifier>PMID: 32630275</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine triphosphate ; Alanine ; Alcohols ; Amines ; Animals ; Aromatic compounds ; ATP ; BmNPV ; Bombyx - genetics ; Bombyx - metabolism ; Bombyx mori ; Carbohydrates ; Chromatography ; Digestive System - metabolism ; Disease ; Disease resistance ; Disease Resistance - genetics ; Gas Chromatography-Mass Spectrometry - methods ; GC-MS ; Germplasm ; Glycosides ; Host-Pathogen Interactions - genetics ; Immune system ; Infections ; Insect Proteins - genetics ; metabolic pathway ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Midgut ; Nucleopolyhedroviruses - pathogenicity ; Oxidation resistance ; Oxidative metabolism ; Oxidative phosphorylation ; Phenylalanine ; Phosphorylation ; Proteomics ; RNA-seq ; silkworm ; Silkworms ; Transcriptome - genetics ; Tryptophan</subject><ispartof>International journal of molecular sciences, 2020-07, Vol.21 (13), p.4707</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</citedby><cites>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2420328226/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2420328226?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32630275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Heying</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><creatorcontrib>Xu, Anying</creatorcontrib><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety,
; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</description><subject>Adenosine triphosphate</subject><subject>Alanine</subject><subject>Alcohols</subject><subject>Amines</subject><subject>Animals</subject><subject>Aromatic compounds</subject><subject>ATP</subject><subject>BmNPV</subject><subject>Bombyx - genetics</subject><subject>Bombyx - metabolism</subject><subject>Bombyx mori</subject><subject>Carbohydrates</subject><subject>Chromatography</subject><subject>Digestive System - metabolism</subject><subject>Disease</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>GC-MS</subject><subject>Germplasm</subject><subject>Glycosides</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Immune system</subject><subject>Infections</subject><subject>Insect Proteins - genetics</subject><subject>metabolic pathway</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Midgut</subject><subject>Nucleopolyhedroviruses - pathogenicity</subject><subject>Oxidation resistance</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phenylalanine</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>RNA-seq</subject><subject>silkworm</subject><subject>Silkworms</subject><subject>Transcriptome - genetics</subject><subject>Tryptophan</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi1ERcvCjTOyxIUDof5I4uSCxK6grNSFStBeLX-Md71K4tZOEL3w2_F222rLyR77mXfsmRehN5R85Lwlp37bJ0YpLwURz9AJLRkrCKnF84P9MXqZ0pYQxlnVvkDHnNWcMFGdoL8rGJUOnTd4sVFRmRGiT2r0YcDB4XEDeOXtehp30Tz0-vYP7kP0-EpFD6OHhJXLOXjef7-4wsvBgblLvkx-WOOzRbH6WcxVAosfKo2AL2JwvsvAK3TkVJfg9f06Q5dfv_xafCvOf5wtF5_PC8NbLgoK1DbGGFVZVza8qoTQpKyB0lLnqKaam8pRDa51LeiMCGp0aUhDCWhr-Qwt97o2qK28jr5X8VYG5eXdQYhrqeLoTQdSWVC1FXVT1qa0VigrLBNEgahIbXMLZ-jTXut60j1YA8MYVfdE9OnN4DdyHX5LwetWUJIF3t8LxHAzQRpl75OBrlMDhClJVuZ50oazXa13_6HbMMUht2pHEc4alkc5Qx_2lIkhpQju8TGUyJ1J5KFJMv728AOP8IMr-D8BH7j_</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Qian, Heying</creator><creator>Li, Gang</creator><creator>Zhao, Guodong</creator><creator>Liu, Mingzhu</creator><creator>Xu, Anying</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200701</creationdate><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><author>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>Alanine</topic><topic>Alcohols</topic><topic>Amines</topic><topic>Animals</topic><topic>Aromatic compounds</topic><topic>ATP</topic><topic>BmNPV</topic><topic>Bombyx - genetics</topic><topic>Bombyx - metabolism</topic><topic>Bombyx mori</topic><topic>Carbohydrates</topic><topic>Chromatography</topic><topic>Digestive System - metabolism</topic><topic>Disease</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>GC-MS</topic><topic>Germplasm</topic><topic>Glycosides</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Immune system</topic><topic>Infections</topic><topic>Insect Proteins - genetics</topic><topic>metabolic pathway</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Midgut</topic><topic>Nucleopolyhedroviruses - pathogenicity</topic><topic>Oxidation resistance</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phenylalanine</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>RNA-seq</topic><topic>silkworm</topic><topic>Silkworms</topic><topic>Transcriptome - genetics</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Heying</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><creatorcontrib>Xu, Anying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Heying</au><au>Li, Gang</au><au>Zhao, Guodong</au><au>Liu, Mingzhu</au><au>Xu, Anying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>21</volume><issue>13</issue><spage>4707</spage><pages>4707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety,
; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32630275</pmid><doi>10.3390/ijms21134707</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-07, Vol.21 (13), p.4707 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Adenosine triphosphate Alanine Alcohols Amines Animals Aromatic compounds ATP BmNPV Bombyx - genetics Bombyx - metabolism Bombyx mori Carbohydrates Chromatography Digestive System - metabolism Disease Disease resistance Disease Resistance - genetics Gas Chromatography-Mass Spectrometry - methods GC-MS Germplasm Glycosides Host-Pathogen Interactions - genetics Immune system Infections Insect Proteins - genetics metabolic pathway Metabolic pathways Metabolism Metabolites Metabolomics Midgut Nucleopolyhedroviruses - pathogenicity Oxidation resistance Oxidative metabolism Oxidative phosphorylation Phenylalanine Phosphorylation Proteomics RNA-seq silkworm Silkworms Transcriptome - genetics Tryptophan |
title | Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Characterisation%20of%20the%20Midgut%20of%20Bombyx%20mori%20Varieties%20after%20BmNPV%20Infection%20Using%20GC-MS-Based%20Metabolite%20Profiling&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Qian,%20Heying&rft.date=2020-07-01&rft.volume=21&rft.issue=13&rft.spage=4707&rft.pages=4707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21134707&rft_dat=%3Cproquest_doaj_%3E2421118322%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420328226&rft_id=info:pmid/32630275&rfr_iscdi=true |