Loading…

Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling

nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-07, Vol.21 (13), p.4707
Main Authors: Qian, Heying, Li, Gang, Zhao, Guodong, Liu, Mingzhu, Xu, Anying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3
cites cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3
container_end_page
container_issue 13
container_start_page 4707
container_title International journal of molecular sciences
container_volume 21
creator Qian, Heying
Li, Gang
Zhao, Guodong
Liu, Mingzhu
Xu, Anying
description nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.
doi_str_mv 10.3390/ijms21134707
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02</doaj_id><sourcerecordid>2421118322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi1ERcvCjTOyxIUDof5I4uSCxK6grNSFStBeLX-Md71K4tZOEL3w2_F222rLyR77mXfsmRehN5R85Lwlp37bJ0YpLwURz9AJLRkrCKnF84P9MXqZ0pYQxlnVvkDHnNWcMFGdoL8rGJUOnTd4sVFRmRGiT2r0YcDB4XEDeOXtehp30Tz0-vYP7kP0-EpFD6OHhJXLOXjef7-4wsvBgblLvkx-WOOzRbH6WcxVAosfKo2AL2JwvsvAK3TkVJfg9f06Q5dfv_xafCvOf5wtF5_PC8NbLgoK1DbGGFVZVza8qoTQpKyB0lLnqKaam8pRDa51LeiMCGp0aUhDCWhr-Qwt97o2qK28jr5X8VYG5eXdQYhrqeLoTQdSWVC1FXVT1qa0VigrLBNEgahIbXMLZ-jTXut60j1YA8MYVfdE9OnN4DdyHX5LwetWUJIF3t8LxHAzQRpl75OBrlMDhClJVuZ50oazXa13_6HbMMUht2pHEc4alkc5Qx_2lIkhpQju8TGUyJ1J5KFJMv728AOP8IMr-D8BH7j_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420328226</pqid></control><display><type>article</type><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</creator><creatorcontrib>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</creatorcontrib><description>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21134707</identifier><identifier>PMID: 32630275</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine triphosphate ; Alanine ; Alcohols ; Amines ; Animals ; Aromatic compounds ; ATP ; BmNPV ; Bombyx - genetics ; Bombyx - metabolism ; Bombyx mori ; Carbohydrates ; Chromatography ; Digestive System - metabolism ; Disease ; Disease resistance ; Disease Resistance - genetics ; Gas Chromatography-Mass Spectrometry - methods ; GC-MS ; Germplasm ; Glycosides ; Host-Pathogen Interactions - genetics ; Immune system ; Infections ; Insect Proteins - genetics ; metabolic pathway ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Midgut ; Nucleopolyhedroviruses - pathogenicity ; Oxidation resistance ; Oxidative metabolism ; Oxidative phosphorylation ; Phenylalanine ; Phosphorylation ; Proteomics ; RNA-seq ; silkworm ; Silkworms ; Transcriptome - genetics ; Tryptophan</subject><ispartof>International journal of molecular sciences, 2020-07, Vol.21 (13), p.4707</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</citedby><cites>FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2420328226/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2420328226?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32630275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Heying</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><creatorcontrib>Xu, Anying</creatorcontrib><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</description><subject>Adenosine triphosphate</subject><subject>Alanine</subject><subject>Alcohols</subject><subject>Amines</subject><subject>Animals</subject><subject>Aromatic compounds</subject><subject>ATP</subject><subject>BmNPV</subject><subject>Bombyx - genetics</subject><subject>Bombyx - metabolism</subject><subject>Bombyx mori</subject><subject>Carbohydrates</subject><subject>Chromatography</subject><subject>Digestive System - metabolism</subject><subject>Disease</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>GC-MS</subject><subject>Germplasm</subject><subject>Glycosides</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Immune system</subject><subject>Infections</subject><subject>Insect Proteins - genetics</subject><subject>metabolic pathway</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Midgut</subject><subject>Nucleopolyhedroviruses - pathogenicity</subject><subject>Oxidation resistance</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phenylalanine</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>RNA-seq</subject><subject>silkworm</subject><subject>Silkworms</subject><subject>Transcriptome - genetics</subject><subject>Tryptophan</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi1ERcvCjTOyxIUDof5I4uSCxK6grNSFStBeLX-Md71K4tZOEL3w2_F222rLyR77mXfsmRehN5R85Lwlp37bJ0YpLwURz9AJLRkrCKnF84P9MXqZ0pYQxlnVvkDHnNWcMFGdoL8rGJUOnTd4sVFRmRGiT2r0YcDB4XEDeOXtehp30Tz0-vYP7kP0-EpFD6OHhJXLOXjef7-4wsvBgblLvkx-WOOzRbH6WcxVAosfKo2AL2JwvsvAK3TkVJfg9f06Q5dfv_xafCvOf5wtF5_PC8NbLgoK1DbGGFVZVza8qoTQpKyB0lLnqKaam8pRDa51LeiMCGp0aUhDCWhr-Qwt97o2qK28jr5X8VYG5eXdQYhrqeLoTQdSWVC1FXVT1qa0VigrLBNEgahIbXMLZ-jTXut60j1YA8MYVfdE9OnN4DdyHX5LwetWUJIF3t8LxHAzQRpl75OBrlMDhClJVuZ50oazXa13_6HbMMUht2pHEc4alkc5Qx_2lIkhpQju8TGUyJ1J5KFJMv728AOP8IMr-D8BH7j_</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Qian, Heying</creator><creator>Li, Gang</creator><creator>Zhao, Guodong</creator><creator>Liu, Mingzhu</creator><creator>Xu, Anying</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200701</creationdate><title>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</title><author>Qian, Heying ; Li, Gang ; Zhao, Guodong ; Liu, Mingzhu ; Xu, Anying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>Alanine</topic><topic>Alcohols</topic><topic>Amines</topic><topic>Animals</topic><topic>Aromatic compounds</topic><topic>ATP</topic><topic>BmNPV</topic><topic>Bombyx - genetics</topic><topic>Bombyx - metabolism</topic><topic>Bombyx mori</topic><topic>Carbohydrates</topic><topic>Chromatography</topic><topic>Digestive System - metabolism</topic><topic>Disease</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>GC-MS</topic><topic>Germplasm</topic><topic>Glycosides</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Immune system</topic><topic>Infections</topic><topic>Insect Proteins - genetics</topic><topic>metabolic pathway</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Midgut</topic><topic>Nucleopolyhedroviruses - pathogenicity</topic><topic>Oxidation resistance</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phenylalanine</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>RNA-seq</topic><topic>silkworm</topic><topic>Silkworms</topic><topic>Transcriptome - genetics</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Heying</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><creatorcontrib>Xu, Anying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Heying</au><au>Li, Gang</au><au>Zhao, Guodong</au><au>Liu, Mingzhu</au><au>Xu, Anying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>21</volume><issue>13</issue><spage>4707</spage><pages>4707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>nucleopolyhedrovirus (BmNPV) is a silkworm disease that is especially harmful to cocoon production and seriously restricts sericultural development. Our laboratory successfully cultivated a new highly BmNPV-resistant silkworm variety, ; however, its mechanism of BmNPV resistance remains unclear. To understand its resistance mechanism, we conducted a metabolomic and transcriptomic study of the midgut of silkworm varieties, Baiyu N and Baiyu after BmNPV infection. We identified 451 differential metabolites, which were mostly comprised of small molecules, such as saccharides, acids, amines, alcohols, and glycosides. We found that the primary differences in disease resistance between the silkworm varieties are metabolic-pathways, tryptophan metabolism, oxidative phosphorylation, ABC-transporters, beta-alanine metabolism, and phenylalanine metabolism. Combined analysis with transcriptomic data suggested that tryptophan metabolism and oxidative phosphorylation are closely related to the silkworms' BmNPV resistance. We hypothesize that the roles of the two metabolic pathways in the BmNPV resistance mechanism might be the following: Oxidative phosphorylation generates a large amount of adenosine triphosphate (ATP) in response to BmNPV infection to provide silkworms the energy required for establishing BmNPV resistance. Tryptophan metabolism then activates the aryl hydrocarbon receptor (AhR) through the exogenous virus BmNPV, which activates the silkworm's immune system to defeat BmNPV infections.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32630275</pmid><doi>10.3390/ijms21134707</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-07, Vol.21 (13), p.4707
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_adea6d76846c4dd7ad7d270ae7506d02
source PubMed (Medline); Publicly Available Content Database
subjects Adenosine triphosphate
Alanine
Alcohols
Amines
Animals
Aromatic compounds
ATP
BmNPV
Bombyx - genetics
Bombyx - metabolism
Bombyx mori
Carbohydrates
Chromatography
Digestive System - metabolism
Disease
Disease resistance
Disease Resistance - genetics
Gas Chromatography-Mass Spectrometry - methods
GC-MS
Germplasm
Glycosides
Host-Pathogen Interactions - genetics
Immune system
Infections
Insect Proteins - genetics
metabolic pathway
Metabolic pathways
Metabolism
Metabolites
Metabolomics
Midgut
Nucleopolyhedroviruses - pathogenicity
Oxidation resistance
Oxidative metabolism
Oxidative phosphorylation
Phenylalanine
Phosphorylation
Proteomics
RNA-seq
silkworm
Silkworms
Transcriptome - genetics
Tryptophan
title Metabolic Characterisation of the Midgut of Bombyx mori Varieties after BmNPV Infection Using GC-MS-Based Metabolite Profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Characterisation%20of%20the%20Midgut%20of%20Bombyx%20mori%20Varieties%20after%20BmNPV%20Infection%20Using%20GC-MS-Based%20Metabolite%20Profiling&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Qian,%20Heying&rft.date=2020-07-01&rft.volume=21&rft.issue=13&rft.spage=4707&rft.pages=4707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21134707&rft_dat=%3Cproquest_doaj_%3E2421118322%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3937-1e1d8ccca5df4835577b046e114b35561b3c5f1bef9f9eb48371cb4c0810ebdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420328226&rft_id=info:pmid/32630275&rfr_iscdi=true