Loading…

Comparative study of PGCs cultivation systems HiS and FAcs: a transcriptomic and cellular biology perspective

In chicken, primordial germ cells (PGC) are crucial for the preservation and manipulation of genetic resources in poultry production. The HiS and FAcs culture systems are two important methods for the in vitro cultivation of chicken PGCs. The purpose of this study was to compare and analyze the two...

Full description

Saved in:
Bibliographic Details
Published in:Poultry science 2024-10, Vol.103 (10), p.104058, Article 104058
Main Authors: Niu, Ying-Jie, Zheng, Dan, Liu, Guangzheng, Ren, Wenjie, Wu, Gaoyuan, Peng, Yixiu, Wu, Jun, Jin, Kai, Zuo, Qisheng, Li, Guohui, Han, Wei, Cui, Xiang-Shun, Chen, Guohong, Li, Bichun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In chicken, primordial germ cells (PGC) are crucial for the preservation and manipulation of genetic resources in poultry production. The HiS and FAcs culture systems are two important methods for the in vitro cultivation of chicken PGCs. The purpose of this study was to compare and analyze the two cultivation systems for PGCs (His and FAcs culture systems) to assess their efficacy and applicability in supporting PGC growth, maintaining PGC characteristics, and lineage transmission ability. The study found that both HiS and FAcs culture systems could maintain the basic biological characteristics of chicken PGCs, including the simultaneous expression of pluripotency and reproductive marker genes, as well as the presence of abundant glycogen granules. Subsequently, we identified 2,145 differentially expressed genes (DEG) through RNA sequencing. GO and KEGG analysis revealed a large number of DEGs enriched in the cell adhesion and calcium ion binding pathways, and the analysis found that these genes maintained a higher level in HiS-PGCs. Further personalized analysis found that the regulatory genes for maintaining PGC pluripotency were highly expressed in HiS-PGCs, while germ cell-related genes showed similar expression in both systems. Additionally, through RNA sequencing data and cell proliferation ability, it was found that PGCs in the FAcs system had a higher proliferation rate and a faster cell cycle. Finally, it was discovered that the expression of cell migration-related genes was maintained at a higher level in HiS-PGCs, but the migration efficiency of HiS-PGCs did not show a significant difference compared to FAcs-PGCs. These results suggest that both HiS and FAcs culture systems can maintain the proliferation and basic characteristics of chicken PGCs, but differences exist in cell proliferation, pluripotency regulation, and cell adhesion. These findings provide new information for optimizing PGC cultivation systems and are important for the preservation and genetic improvement of chicken PGCs.
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.104058