Loading…

Utilising an in silico model to predict outcomes in senescence-driven acute liver injury

Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The...

Full description

Saved in:
Bibliographic Details
Published in:npj Regenerative medicine 2024-09, Vol.9 (1), p.26-17, Article 26
Main Authors: Ashmore-Harris, Candice, Antonopoulou, Evangelia, Aird, Rhona E., Man, Tak Yung, Finney, Simon M., Speel, Annelijn M., Lu, Wei-Yu, Forbes, Stuart J., Gadd, Victoria L., Waters, Sarah L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-a32ef23c27491eb6049e305dc53dfd9fab4fb140e5ddb22089ce417beef38da13
container_end_page 17
container_issue 1
container_start_page 26
container_title npj Regenerative medicine
container_volume 9
creator Ashmore-Harris, Candice
Antonopoulou, Evangelia
Aird, Rhona E.
Man, Tak Yung
Finney, Simon M.
Speel, Annelijn M.
Lu, Wei-Yu
Forbes, Stuart J.
Gadd, Victoria L.
Waters, Sarah L.
description Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo - in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2 fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.
doi_str_mv 10.1038/s41536-024-00371-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae12cbb445934c8a8595557d05d68977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae12cbb445934c8a8595557d05d68977</doaj_id><sourcerecordid>3111636187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a32ef23c27491eb6049e305dc53dfd9fab4fb140e5ddb22089ce417beef38da13</originalsourceid><addsrcrecordid>eNp9kk1v3CAQhlHVqImS_IEcKqReenHLpw2nqor6ESlSL42UG8Iw3rKyYQt2pPz7sOs0TXroiYF5eYYZXoQuKPlACVcfi6CStw1hoiGEd7Shr9AJI7JruNby9bP4GJ2XsiWE0K7lstVv0DHXXGih9Am6vZnDGEqIG2wjDhGXunUJT8nDiOeEdxl8cDNOy-zSBOWggQjFQXTQ-BzuIGLrlhnwWONcBdsl35-ho8GOBc4f11N08_XLz8vvzfWPb1eXn68bJxibG8sZDIw71glNoW-J0MCJ9E5yP3g92F4MPRUEpPc9Y0RpB4J2PcDAlbeUn6KrleuT3ZpdDpPN9ybZYA4HKW-MzXNwIxgLlLm-F0LW9p2ySmopZedruVbprqusTytrt_QT-NrhnO34AvoyE8Mvs0l3hlIhmFSsEt4_EnL6vUCZzRTqpMbRRkhLMZxS2vKWqn2xd_9It2nJsc7qoKofxPgeyFaVy6mUDMPTaygxeyOY1QimGsEcjGD2M3n7vI-nK3--vQr4Kig1FTeQ_9b-D_YBiW--uA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111349232</pqid></control><display><type>article</type><title>Utilising an in silico model to predict outcomes in senescence-driven acute liver injury</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ashmore-Harris, Candice ; Antonopoulou, Evangelia ; Aird, Rhona E. ; Man, Tak Yung ; Finney, Simon M. ; Speel, Annelijn M. ; Lu, Wei-Yu ; Forbes, Stuart J. ; Gadd, Victoria L. ; Waters, Sarah L.</creator><creatorcontrib>Ashmore-Harris, Candice ; Antonopoulou, Evangelia ; Aird, Rhona E. ; Man, Tak Yung ; Finney, Simon M. ; Speel, Annelijn M. ; Lu, Wei-Yu ; Forbes, Stuart J. ; Gadd, Victoria L. ; Waters, Sarah L.</creatorcontrib><description>Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo - in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2 fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.</description><identifier>ISSN: 2057-3995</identifier><identifier>EISSN: 2057-3995</identifier><identifier>DOI: 10.1038/s41536-024-00371-1</identifier><identifier>PMID: 39349489</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532 ; 692/699 ; Biomaterials ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Immunology ; Liver diseases ; Mathematical models ; Ordinary differential equations ; Regenerative Medicine/Tissue Engineering ; Senescence ; Stem Cells</subject><ispartof>npj Regenerative medicine, 2024-09, Vol.9 (1), p.26-17, Article 26</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-a32ef23c27491eb6049e305dc53dfd9fab4fb140e5ddb22089ce417beef38da13</cites><orcidid>0000-0003-3715-2561 ; 0000-0003-1819-8660 ; 0000-0002-1014-8063 ; 0000-0001-5285-0523 ; 0000-0003-4150-0784 ; 0000-0001-9270-8599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3111349232/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3111349232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39349489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashmore-Harris, Candice</creatorcontrib><creatorcontrib>Antonopoulou, Evangelia</creatorcontrib><creatorcontrib>Aird, Rhona E.</creatorcontrib><creatorcontrib>Man, Tak Yung</creatorcontrib><creatorcontrib>Finney, Simon M.</creatorcontrib><creatorcontrib>Speel, Annelijn M.</creatorcontrib><creatorcontrib>Lu, Wei-Yu</creatorcontrib><creatorcontrib>Forbes, Stuart J.</creatorcontrib><creatorcontrib>Gadd, Victoria L.</creatorcontrib><creatorcontrib>Waters, Sarah L.</creatorcontrib><title>Utilising an in silico model to predict outcomes in senescence-driven acute liver injury</title><title>npj Regenerative medicine</title><addtitle>npj Regen Med</addtitle><addtitle>NPJ Regen Med</addtitle><description>Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo - in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2 fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.</description><subject>631/532</subject><subject>692/699</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Immunology</subject><subject>Liver diseases</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Senescence</subject><subject>Stem Cells</subject><issn>2057-3995</issn><issn>2057-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v3CAQhlHVqImS_IEcKqReenHLpw2nqor6ESlSL42UG8Iw3rKyYQt2pPz7sOs0TXroiYF5eYYZXoQuKPlACVcfi6CStw1hoiGEd7Shr9AJI7JruNby9bP4GJ2XsiWE0K7lstVv0DHXXGih9Am6vZnDGEqIG2wjDhGXunUJT8nDiOeEdxl8cDNOy-zSBOWggQjFQXTQ-BzuIGLrlhnwWONcBdsl35-ho8GOBc4f11N08_XLz8vvzfWPb1eXn68bJxibG8sZDIw71glNoW-J0MCJ9E5yP3g92F4MPRUEpPc9Y0RpB4J2PcDAlbeUn6KrleuT3ZpdDpPN9ybZYA4HKW-MzXNwIxgLlLm-F0LW9p2ySmopZedruVbprqusTytrt_QT-NrhnO34AvoyE8Mvs0l3hlIhmFSsEt4_EnL6vUCZzRTqpMbRRkhLMZxS2vKWqn2xd_9It2nJsc7qoKofxPgeyFaVy6mUDMPTaygxeyOY1QimGsEcjGD2M3n7vI-nK3--vQr4Kig1FTeQ_9b-D_YBiW--uA</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Ashmore-Harris, Candice</creator><creator>Antonopoulou, Evangelia</creator><creator>Aird, Rhona E.</creator><creator>Man, Tak Yung</creator><creator>Finney, Simon M.</creator><creator>Speel, Annelijn M.</creator><creator>Lu, Wei-Yu</creator><creator>Forbes, Stuart J.</creator><creator>Gadd, Victoria L.</creator><creator>Waters, Sarah L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3715-2561</orcidid><orcidid>https://orcid.org/0000-0003-1819-8660</orcidid><orcidid>https://orcid.org/0000-0002-1014-8063</orcidid><orcidid>https://orcid.org/0000-0001-5285-0523</orcidid><orcidid>https://orcid.org/0000-0003-4150-0784</orcidid><orcidid>https://orcid.org/0000-0001-9270-8599</orcidid></search><sort><creationdate>20240930</creationdate><title>Utilising an in silico model to predict outcomes in senescence-driven acute liver injury</title><author>Ashmore-Harris, Candice ; Antonopoulou, Evangelia ; Aird, Rhona E. ; Man, Tak Yung ; Finney, Simon M. ; Speel, Annelijn M. ; Lu, Wei-Yu ; Forbes, Stuart J. ; Gadd, Victoria L. ; Waters, Sarah L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a32ef23c27491eb6049e305dc53dfd9fab4fb140e5ddb22089ce417beef38da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/532</topic><topic>692/699</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Immunology</topic><topic>Liver diseases</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Senescence</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashmore-Harris, Candice</creatorcontrib><creatorcontrib>Antonopoulou, Evangelia</creatorcontrib><creatorcontrib>Aird, Rhona E.</creatorcontrib><creatorcontrib>Man, Tak Yung</creatorcontrib><creatorcontrib>Finney, Simon M.</creatorcontrib><creatorcontrib>Speel, Annelijn M.</creatorcontrib><creatorcontrib>Lu, Wei-Yu</creatorcontrib><creatorcontrib>Forbes, Stuart J.</creatorcontrib><creatorcontrib>Gadd, Victoria L.</creatorcontrib><creatorcontrib>Waters, Sarah L.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>npj Regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashmore-Harris, Candice</au><au>Antonopoulou, Evangelia</au><au>Aird, Rhona E.</au><au>Man, Tak Yung</au><au>Finney, Simon M.</au><au>Speel, Annelijn M.</au><au>Lu, Wei-Yu</au><au>Forbes, Stuart J.</au><au>Gadd, Victoria L.</au><au>Waters, Sarah L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilising an in silico model to predict outcomes in senescence-driven acute liver injury</atitle><jtitle>npj Regenerative medicine</jtitle><stitle>npj Regen Med</stitle><addtitle>NPJ Regen Med</addtitle><date>2024-09-30</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>26</spage><epage>17</epage><pages>26-17</pages><artnum>26</artnum><issn>2057-3995</issn><eissn>2057-3995</eissn><abstract>Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo - in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2 fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39349489</pmid><doi>10.1038/s41536-024-00371-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3715-2561</orcidid><orcidid>https://orcid.org/0000-0003-1819-8660</orcidid><orcidid>https://orcid.org/0000-0002-1014-8063</orcidid><orcidid>https://orcid.org/0000-0001-5285-0523</orcidid><orcidid>https://orcid.org/0000-0003-4150-0784</orcidid><orcidid>https://orcid.org/0000-0001-9270-8599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3995
ispartof npj Regenerative medicine, 2024-09, Vol.9 (1), p.26-17, Article 26
issn 2057-3995
2057-3995
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ae12cbb445934c8a8595557d05d68977
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/532
692/699
Biomaterials
Biomedical and Life Sciences
Biomedicine
Cell Biology
Immunology
Liver diseases
Mathematical models
Ordinary differential equations
Regenerative Medicine/Tissue Engineering
Senescence
Stem Cells
title Utilising an in silico model to predict outcomes in senescence-driven acute liver injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilising%20an%20in%20silico%20model%20to%20predict%20outcomes%20in%20senescence-driven%20acute%20liver%20injury&rft.jtitle=npj%20Regenerative%20medicine&rft.au=Ashmore-Harris,%20Candice&rft.date=2024-09-30&rft.volume=9&rft.issue=1&rft.spage=26&rft.epage=17&rft.pages=26-17&rft.artnum=26&rft.issn=2057-3995&rft.eissn=2057-3995&rft_id=info:doi/10.1038/s41536-024-00371-1&rft_dat=%3Cproquest_doaj_%3E3111636187%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-a32ef23c27491eb6049e305dc53dfd9fab4fb140e5ddb22089ce417beef38da13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111349232&rft_id=info:pmid/39349489&rfr_iscdi=true