Loading…
Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data
Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Met...
Saved in:
Published in: | Journal of the American Heart Association 2023-02, Vol.12 (3), p.e028819-e028819 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313 |
container_end_page | e028819 |
container_issue | 3 |
container_start_page | e028819 |
container_title | Journal of the American Heart Association |
container_volume | 12 |
creator | Messé, Steven R Kasner, Scott E Cucchiara, Brett L McGarvey, Michael L Cummings, Stephanie Acker, Michael A Desai, Nimesh Atluri, Pavan Wang, Grace J Jackson, Benjamin M Weimer, James |
description | Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. |
doi_str_mv | 10.1161/JAHA.122.028819 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da</doaj_id><sourcerecordid>2771333015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</originalsourceid><addsrcrecordid>eNpVkc1vFCEYh4nR2Kb27M1w9LJbvmYYLiaTbrU1TTxo9UjehZctdWaoDNuk_73UqU3LBXj58fDxEPKeszXnLT_52p_3ay7Emomu4-YVORRM6ZUxHXv9bHxAjuf5htXWCi0b85YcyFbzrmu6Q_JrgzneQYlpojB5-hOG6JdpCrVC-2GXcizXIy2JbrCgK_R7yek30qs5Tjva55H2zuGAOY1Y8j3dQIF35E2AYcbjx_6IXH0--3F6vrr89uXitL9cOdWYsjJaCKM1F63RXrWGSakd5x0ECI4jQNN1iEw4UGGLwXsZ3BYFOAaKOcnlEblYuD7Bjb3NcYR8bxNE-6-Q8s5CLtENaAG5rEhUQQgleAtto13w2imjG-ahsj4trNv9dkTvcCoZhhfQlytTvLa7dGeN0bJVqgI-PgJy-rPHudgxzvVnBpgw7Wcr6kullIw3NXqyRF1O85wxPB3DmX2wax_s2mrXLnbrjg_Pb_eU_-9S_gXRHqDW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771333015</pqid></control><display><type>article</type><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><source>Wiley-Blackwell Titles (Open access)</source><source>PubMed Central(OpenAccess)</source><creator>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</creator><creatorcontrib>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</creatorcontrib><description>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</description><identifier>ISSN: 2047-9980</identifier><identifier>EISSN: 2047-9980</identifier><identifier>DOI: 10.1161/JAHA.122.028819</identifier><identifier>PMID: 36718858</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Accelerometry ; Algorithms ; Arm ; automation ; Case-Control Studies ; delayed diagnosis ; Humans ; in‐hospital stroke ; Original Research ; Stroke - diagnosis ; stroke detection</subject><ispartof>Journal of the American Heart Association, 2023-02, Vol.12 (3), p.e028819-e028819</ispartof><rights>2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</citedby><cites>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</cites><orcidid>0000-0003-0418-6917 ; 0000-0001-8167-9163 ; 0000-0003-3108-5441 ; 0000-0002-4456-5674 ; 0000-0002-5218-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973644/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973644/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36718858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Messé, Steven R</creatorcontrib><creatorcontrib>Kasner, Scott E</creatorcontrib><creatorcontrib>Cucchiara, Brett L</creatorcontrib><creatorcontrib>McGarvey, Michael L</creatorcontrib><creatorcontrib>Cummings, Stephanie</creatorcontrib><creatorcontrib>Acker, Michael A</creatorcontrib><creatorcontrib>Desai, Nimesh</creatorcontrib><creatorcontrib>Atluri, Pavan</creatorcontrib><creatorcontrib>Wang, Grace J</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Weimer, James</creatorcontrib><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><title>Journal of the American Heart Association</title><addtitle>J Am Heart Assoc</addtitle><description>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</description><subject>Accelerometry</subject><subject>Algorithms</subject><subject>Arm</subject><subject>automation</subject><subject>Case-Control Studies</subject><subject>delayed diagnosis</subject><subject>Humans</subject><subject>in‐hospital stroke</subject><subject>Original Research</subject><subject>Stroke - diagnosis</subject><subject>stroke detection</subject><issn>2047-9980</issn><issn>2047-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1vFCEYh4nR2Kb27M1w9LJbvmYYLiaTbrU1TTxo9UjehZctdWaoDNuk_73UqU3LBXj58fDxEPKeszXnLT_52p_3ay7Emomu4-YVORRM6ZUxHXv9bHxAjuf5htXWCi0b85YcyFbzrmu6Q_JrgzneQYlpojB5-hOG6JdpCrVC-2GXcizXIy2JbrCgK_R7yek30qs5Tjva55H2zuGAOY1Y8j3dQIF35E2AYcbjx_6IXH0--3F6vrr89uXitL9cOdWYsjJaCKM1F63RXrWGSakd5x0ECI4jQNN1iEw4UGGLwXsZ3BYFOAaKOcnlEblYuD7Bjb3NcYR8bxNE-6-Q8s5CLtENaAG5rEhUQQgleAtto13w2imjG-ahsj4trNv9dkTvcCoZhhfQlytTvLa7dGeN0bJVqgI-PgJy-rPHudgxzvVnBpgw7Wcr6kullIw3NXqyRF1O85wxPB3DmX2wax_s2mrXLnbrjg_Pb_eU_-9S_gXRHqDW</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Messé, Steven R</creator><creator>Kasner, Scott E</creator><creator>Cucchiara, Brett L</creator><creator>McGarvey, Michael L</creator><creator>Cummings, Stephanie</creator><creator>Acker, Michael A</creator><creator>Desai, Nimesh</creator><creator>Atluri, Pavan</creator><creator>Wang, Grace J</creator><creator>Jackson, Benjamin M</creator><creator>Weimer, James</creator><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0418-6917</orcidid><orcidid>https://orcid.org/0000-0001-8167-9163</orcidid><orcidid>https://orcid.org/0000-0003-3108-5441</orcidid><orcidid>https://orcid.org/0000-0002-4456-5674</orcidid><orcidid>https://orcid.org/0000-0002-5218-9015</orcidid></search><sort><creationdate>20230207</creationdate><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><author>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometry</topic><topic>Algorithms</topic><topic>Arm</topic><topic>automation</topic><topic>Case-Control Studies</topic><topic>delayed diagnosis</topic><topic>Humans</topic><topic>in‐hospital stroke</topic><topic>Original Research</topic><topic>Stroke - diagnosis</topic><topic>stroke detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messé, Steven R</creatorcontrib><creatorcontrib>Kasner, Scott E</creatorcontrib><creatorcontrib>Cucchiara, Brett L</creatorcontrib><creatorcontrib>McGarvey, Michael L</creatorcontrib><creatorcontrib>Cummings, Stephanie</creatorcontrib><creatorcontrib>Acker, Michael A</creatorcontrib><creatorcontrib>Desai, Nimesh</creatorcontrib><creatorcontrib>Atluri, Pavan</creatorcontrib><creatorcontrib>Wang, Grace J</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Weimer, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Journal of the American Heart Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messé, Steven R</au><au>Kasner, Scott E</au><au>Cucchiara, Brett L</au><au>McGarvey, Michael L</au><au>Cummings, Stephanie</au><au>Acker, Michael A</au><au>Desai, Nimesh</au><au>Atluri, Pavan</au><au>Wang, Grace J</au><au>Jackson, Benjamin M</au><au>Weimer, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</atitle><jtitle>Journal of the American Heart Association</jtitle><addtitle>J Am Heart Assoc</addtitle><date>2023-02-07</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>e028819</spage><epage>e028819</epage><pages>e028819-e028819</pages><issn>2047-9980</issn><eissn>2047-9980</eissn><abstract>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>36718858</pmid><doi>10.1161/JAHA.122.028819</doi><orcidid>https://orcid.org/0000-0003-0418-6917</orcidid><orcidid>https://orcid.org/0000-0001-8167-9163</orcidid><orcidid>https://orcid.org/0000-0003-3108-5441</orcidid><orcidid>https://orcid.org/0000-0002-4456-5674</orcidid><orcidid>https://orcid.org/0000-0002-5218-9015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-9980 |
ispartof | Journal of the American Heart Association, 2023-02, Vol.12 (3), p.e028819-e028819 |
issn | 2047-9980 2047-9980 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da |
source | Wiley-Blackwell Titles (Open access); PubMed Central(OpenAccess) |
subjects | Accelerometry Algorithms Arm automation Case-Control Studies delayed diagnosis Humans in‐hospital stroke Original Research Stroke - diagnosis stroke detection |
title | Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20Validation%20of%20an%20Algorithm%20to%20Detect%20Stroke%20Using%20Arm%20Accelerometry%20Data&rft.jtitle=Journal%20of%20the%20American%20Heart%20Association&rft.au=Mess%C3%A9,%20Steven%20R&rft.date=2023-02-07&rft.volume=12&rft.issue=3&rft.spage=e028819&rft.epage=e028819&rft.pages=e028819-e028819&rft.issn=2047-9980&rft.eissn=2047-9980&rft_id=info:doi/10.1161/JAHA.122.028819&rft_dat=%3Cproquest_doaj_%3E2771333015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771333015&rft_id=info:pmid/36718858&rfr_iscdi=true |