Loading…

Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data

Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Met...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Heart Association 2023-02, Vol.12 (3), p.e028819-e028819
Main Authors: Messé, Steven R, Kasner, Scott E, Cucchiara, Brett L, McGarvey, Michael L, Cummings, Stephanie, Acker, Michael A, Desai, Nimesh, Atluri, Pavan, Wang, Grace J, Jackson, Benjamin M, Weimer, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313
cites cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313
container_end_page e028819
container_issue 3
container_start_page e028819
container_title Journal of the American Heart Association
container_volume 12
creator Messé, Steven R
Kasner, Scott E
Cucchiara, Brett L
McGarvey, Michael L
Cummings, Stephanie
Acker, Michael A
Desai, Nimesh
Atluri, Pavan
Wang, Grace J
Jackson, Benjamin M
Weimer, James
description Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.
doi_str_mv 10.1161/JAHA.122.028819
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da</doaj_id><sourcerecordid>2771333015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</originalsourceid><addsrcrecordid>eNpVkc1vFCEYh4nR2Kb27M1w9LJbvmYYLiaTbrU1TTxo9UjehZctdWaoDNuk_73UqU3LBXj58fDxEPKeszXnLT_52p_3ay7Emomu4-YVORRM6ZUxHXv9bHxAjuf5htXWCi0b85YcyFbzrmu6Q_JrgzneQYlpojB5-hOG6JdpCrVC-2GXcizXIy2JbrCgK_R7yek30qs5Tjva55H2zuGAOY1Y8j3dQIF35E2AYcbjx_6IXH0--3F6vrr89uXitL9cOdWYsjJaCKM1F63RXrWGSakd5x0ECI4jQNN1iEw4UGGLwXsZ3BYFOAaKOcnlEblYuD7Bjb3NcYR8bxNE-6-Q8s5CLtENaAG5rEhUQQgleAtto13w2imjG-ahsj4trNv9dkTvcCoZhhfQlytTvLa7dGeN0bJVqgI-PgJy-rPHudgxzvVnBpgw7Wcr6kullIw3NXqyRF1O85wxPB3DmX2wax_s2mrXLnbrjg_Pb_eU_-9S_gXRHqDW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771333015</pqid></control><display><type>article</type><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><source>Wiley-Blackwell Titles (Open access)</source><source>PubMed Central(OpenAccess)</source><creator>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</creator><creatorcontrib>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</creatorcontrib><description>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</description><identifier>ISSN: 2047-9980</identifier><identifier>EISSN: 2047-9980</identifier><identifier>DOI: 10.1161/JAHA.122.028819</identifier><identifier>PMID: 36718858</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Accelerometry ; Algorithms ; Arm ; automation ; Case-Control Studies ; delayed diagnosis ; Humans ; in‐hospital stroke ; Original Research ; Stroke - diagnosis ; stroke detection</subject><ispartof>Journal of the American Heart Association, 2023-02, Vol.12 (3), p.e028819-e028819</ispartof><rights>2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</citedby><cites>FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</cites><orcidid>0000-0003-0418-6917 ; 0000-0001-8167-9163 ; 0000-0003-3108-5441 ; 0000-0002-4456-5674 ; 0000-0002-5218-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973644/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973644/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36718858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Messé, Steven R</creatorcontrib><creatorcontrib>Kasner, Scott E</creatorcontrib><creatorcontrib>Cucchiara, Brett L</creatorcontrib><creatorcontrib>McGarvey, Michael L</creatorcontrib><creatorcontrib>Cummings, Stephanie</creatorcontrib><creatorcontrib>Acker, Michael A</creatorcontrib><creatorcontrib>Desai, Nimesh</creatorcontrib><creatorcontrib>Atluri, Pavan</creatorcontrib><creatorcontrib>Wang, Grace J</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Weimer, James</creatorcontrib><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><title>Journal of the American Heart Association</title><addtitle>J Am Heart Assoc</addtitle><description>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</description><subject>Accelerometry</subject><subject>Algorithms</subject><subject>Arm</subject><subject>automation</subject><subject>Case-Control Studies</subject><subject>delayed diagnosis</subject><subject>Humans</subject><subject>in‐hospital stroke</subject><subject>Original Research</subject><subject>Stroke - diagnosis</subject><subject>stroke detection</subject><issn>2047-9980</issn><issn>2047-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1vFCEYh4nR2Kb27M1w9LJbvmYYLiaTbrU1TTxo9UjehZctdWaoDNuk_73UqU3LBXj58fDxEPKeszXnLT_52p_3ay7Emomu4-YVORRM6ZUxHXv9bHxAjuf5htXWCi0b85YcyFbzrmu6Q_JrgzneQYlpojB5-hOG6JdpCrVC-2GXcizXIy2JbrCgK_R7yek30qs5Tjva55H2zuGAOY1Y8j3dQIF35E2AYcbjx_6IXH0--3F6vrr89uXitL9cOdWYsjJaCKM1F63RXrWGSakd5x0ECI4jQNN1iEw4UGGLwXsZ3BYFOAaKOcnlEblYuD7Bjb3NcYR8bxNE-6-Q8s5CLtENaAG5rEhUQQgleAtto13w2imjG-ahsj4trNv9dkTvcCoZhhfQlytTvLa7dGeN0bJVqgI-PgJy-rPHudgxzvVnBpgw7Wcr6kullIw3NXqyRF1O85wxPB3DmX2wax_s2mrXLnbrjg_Pb_eU_-9S_gXRHqDW</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Messé, Steven R</creator><creator>Kasner, Scott E</creator><creator>Cucchiara, Brett L</creator><creator>McGarvey, Michael L</creator><creator>Cummings, Stephanie</creator><creator>Acker, Michael A</creator><creator>Desai, Nimesh</creator><creator>Atluri, Pavan</creator><creator>Wang, Grace J</creator><creator>Jackson, Benjamin M</creator><creator>Weimer, James</creator><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0418-6917</orcidid><orcidid>https://orcid.org/0000-0001-8167-9163</orcidid><orcidid>https://orcid.org/0000-0003-3108-5441</orcidid><orcidid>https://orcid.org/0000-0002-4456-5674</orcidid><orcidid>https://orcid.org/0000-0002-5218-9015</orcidid></search><sort><creationdate>20230207</creationdate><title>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</title><author>Messé, Steven R ; Kasner, Scott E ; Cucchiara, Brett L ; McGarvey, Michael L ; Cummings, Stephanie ; Acker, Michael A ; Desai, Nimesh ; Atluri, Pavan ; Wang, Grace J ; Jackson, Benjamin M ; Weimer, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometry</topic><topic>Algorithms</topic><topic>Arm</topic><topic>automation</topic><topic>Case-Control Studies</topic><topic>delayed diagnosis</topic><topic>Humans</topic><topic>in‐hospital stroke</topic><topic>Original Research</topic><topic>Stroke - diagnosis</topic><topic>stroke detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messé, Steven R</creatorcontrib><creatorcontrib>Kasner, Scott E</creatorcontrib><creatorcontrib>Cucchiara, Brett L</creatorcontrib><creatorcontrib>McGarvey, Michael L</creatorcontrib><creatorcontrib>Cummings, Stephanie</creatorcontrib><creatorcontrib>Acker, Michael A</creatorcontrib><creatorcontrib>Desai, Nimesh</creatorcontrib><creatorcontrib>Atluri, Pavan</creatorcontrib><creatorcontrib>Wang, Grace J</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Weimer, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Journal of the American Heart Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messé, Steven R</au><au>Kasner, Scott E</au><au>Cucchiara, Brett L</au><au>McGarvey, Michael L</au><au>Cummings, Stephanie</au><au>Acker, Michael A</au><au>Desai, Nimesh</au><au>Atluri, Pavan</au><au>Wang, Grace J</au><au>Jackson, Benjamin M</au><au>Weimer, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data</atitle><jtitle>Journal of the American Heart Association</jtitle><addtitle>J Am Heart Assoc</addtitle><date>2023-02-07</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>e028819</spage><epage>e028819</epage><pages>e028819-e028819</pages><issn>2047-9980</issn><eissn>2047-9980</eissn><abstract>Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case-control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of 1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>36718858</pmid><doi>10.1161/JAHA.122.028819</doi><orcidid>https://orcid.org/0000-0003-0418-6917</orcidid><orcidid>https://orcid.org/0000-0001-8167-9163</orcidid><orcidid>https://orcid.org/0000-0003-3108-5441</orcidid><orcidid>https://orcid.org/0000-0002-4456-5674</orcidid><orcidid>https://orcid.org/0000-0002-5218-9015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-9980
ispartof Journal of the American Heart Association, 2023-02, Vol.12 (3), p.e028819-e028819
issn 2047-9980
2047-9980
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ae131eae4f224216a657cfd7c49750da
source Wiley-Blackwell Titles (Open access); PubMed Central(OpenAccess)
subjects Accelerometry
Algorithms
Arm
automation
Case-Control Studies
delayed diagnosis
Humans
in‐hospital stroke
Original Research
Stroke - diagnosis
stroke detection
title Derivation and Validation of an Algorithm to Detect Stroke Using Arm Accelerometry Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20Validation%20of%20an%20Algorithm%20to%20Detect%20Stroke%20Using%20Arm%20Accelerometry%20Data&rft.jtitle=Journal%20of%20the%20American%20Heart%20Association&rft.au=Mess%C3%A9,%20Steven%20R&rft.date=2023-02-07&rft.volume=12&rft.issue=3&rft.spage=e028819&rft.epage=e028819&rft.pages=e028819-e028819&rft.issn=2047-9980&rft.eissn=2047-9980&rft_id=info:doi/10.1161/JAHA.122.028819&rft_dat=%3Cproquest_doaj_%3E2771333015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-972297712697d4690337c118afafc1eaa588ee02ca4fbefdd3fcbe2ac0a40c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771333015&rft_id=info:pmid/36718858&rfr_iscdi=true