Loading…

Quantile regression for the statistical analysis of immunological data with many non-detects

Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques curren...

Full description

Saved in:
Bibliographic Details
Published in:BMC immunology 2012-07, Vol.13 (1), p.37-37, Article 37
Main Authors: Eilers, Paul H C, Röder, Esther, Savelkoul, Huub F J, van Wijk, Roy Gerth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3
cites cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3
container_end_page 37
container_issue 1
container_start_page 37
container_title BMC immunology
container_volume 13
creator Eilers, Paul H C
Röder, Esther
Savelkoul, Huub F J
van Wijk, Roy Gerth
description Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.
doi_str_mv 10.1186/1471-2172-13-37
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae38a62433784506945958fe78c60146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534123720</galeid><doaj_id>oai_doaj_org_article_ae38a62433784506945958fe78c60146</doaj_id><sourcerecordid>A534123720</sourcerecordid><originalsourceid>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</originalsourceid><addsrcrecordid>eNp1k8lv1DAUhyMEoqVw5oYicYFDWm_xwgGpVCwjVUJsNyTLcZyMq8RubYdh_nucmTJqUJElO3rv9z6_xSmK5xCcQsjpGSQMVggyVEFcYfagOD5YHt75PiqexHgFAGQc8cfFEUKMCoLxcfHzy6RcsoMpg-mDidF6V3Y-lGltyphUsjFZrYZSOTVso42l70o7jpPzg-93nlYlVW5sWpejctvSeVe1Jhmd4tPiUaeGaJ7dnifFjw_vv198qi4_f1xdnF9WDRU8VUyAuoaUI0Eo0owTXiOGW8q0qLuaQEBq2gkEBGqwoswIwwTlDewEazQADT4pVntu69WVvA52VGErvbJyZ_ChlyrkMgYjlcFcUZRrz_fUIHehFjXvDOOaAkhoZr3ZszaqN866vEmngrZxBxxsE2b4ZgrSDfNxPTVRElxDIHLw231wNo6m1caloIZFRkuPs2vZ-18SE8IoZRnwbg9orP8PYOnRfpTzmOU8ZgmxxDPk1W0Wwd9MJiY52qjNMChn_BQlzGUjUBM0J_zyH-mVn0Ie9aziIOcEcqsOql7lFlrX-Xy3nqHyvMYEIswQyKrTe1R5tWa02jvT5We2DHi9CMiaZH6nXk0xytW3r0vt2V6rg48xmO7QEwjk_Cvc04UXd2dx0P99-_gPyM4Brg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080766043</pqid></control><display><type>article</type><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</creator><creatorcontrib>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</creatorcontrib><description>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</description><identifier>ISSN: 1471-2172</identifier><identifier>EISSN: 1471-2172</identifier><identifier>DOI: 10.1186/1471-2172-13-37</identifier><identifier>PMID: 22769433</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Data analysis ; Economic models ; Expected values ; Humans ; Immunologic Tests - methods ; Immunological data ; immunotherapy ; Information management ; Medical research ; Medicine, Experimental ; Methodology ; Models, Statistical ; Non-detects ; Observer Variation ; Outliers ; Quantile regression ; Regression Analysis ; Research Design ; Robustness ; Soluble biological markers ; Statistical ; Statistical analysis ; Studies</subject><ispartof>BMC immunology, 2012-07, Vol.13 (1), p.37-37, Article 37</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><rights>2012 Eilers et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2012 Eilers et al.; licensee BioMed Central Ltd. 2012 Eilers et al.; licensee BioMed Central Ltd.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</citedby><cites>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1080766043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22769433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eilers, Paul H C</creatorcontrib><creatorcontrib>Röder, Esther</creatorcontrib><creatorcontrib>Savelkoul, Huub F J</creatorcontrib><creatorcontrib>van Wijk, Roy Gerth</creatorcontrib><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><title>BMC immunology</title><addtitle>BMC Immunol</addtitle><description>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</description><subject>Analysis</subject><subject>Animals</subject><subject>Data analysis</subject><subject>Economic models</subject><subject>Expected values</subject><subject>Humans</subject><subject>Immunologic Tests - methods</subject><subject>Immunological data</subject><subject>immunotherapy</subject><subject>Information management</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methodology</subject><subject>Models, Statistical</subject><subject>Non-detects</subject><subject>Observer Variation</subject><subject>Outliers</subject><subject>Quantile regression</subject><subject>Regression Analysis</subject><subject>Research Design</subject><subject>Robustness</subject><subject>Soluble biological markers</subject><subject>Statistical</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>1471-2172</issn><issn>1471-2172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1k8lv1DAUhyMEoqVw5oYicYFDWm_xwgGpVCwjVUJsNyTLcZyMq8RubYdh_nucmTJqUJElO3rv9z6_xSmK5xCcQsjpGSQMVggyVEFcYfagOD5YHt75PiqexHgFAGQc8cfFEUKMCoLxcfHzy6RcsoMpg-mDidF6V3Y-lGltyphUsjFZrYZSOTVso42l70o7jpPzg-93nlYlVW5sWpejctvSeVe1Jhmd4tPiUaeGaJ7dnifFjw_vv198qi4_f1xdnF9WDRU8VUyAuoaUI0Eo0owTXiOGW8q0qLuaQEBq2gkEBGqwoswIwwTlDewEazQADT4pVntu69WVvA52VGErvbJyZ_ChlyrkMgYjlcFcUZRrz_fUIHehFjXvDOOaAkhoZr3ZszaqN866vEmngrZxBxxsE2b4ZgrSDfNxPTVRElxDIHLw231wNo6m1caloIZFRkuPs2vZ-18SE8IoZRnwbg9orP8PYOnRfpTzmOU8ZgmxxDPk1W0Wwd9MJiY52qjNMChn_BQlzGUjUBM0J_zyH-mVn0Ie9aziIOcEcqsOql7lFlrX-Xy3nqHyvMYEIswQyKrTe1R5tWa02jvT5We2DHi9CMiaZH6nXk0xytW3r0vt2V6rg48xmO7QEwjk_Cvc04UXd2dx0P99-_gPyM4Brg</recordid><startdate>20120707</startdate><enddate>20120707</enddate><creator>Eilers, Paul H C</creator><creator>Röder, Esther</creator><creator>Savelkoul, Huub F J</creator><creator>van Wijk, Roy Gerth</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20120707</creationdate><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><author>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Data analysis</topic><topic>Economic models</topic><topic>Expected values</topic><topic>Humans</topic><topic>Immunologic Tests - methods</topic><topic>Immunological data</topic><topic>immunotherapy</topic><topic>Information management</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methodology</topic><topic>Models, Statistical</topic><topic>Non-detects</topic><topic>Observer Variation</topic><topic>Outliers</topic><topic>Quantile regression</topic><topic>Regression Analysis</topic><topic>Research Design</topic><topic>Robustness</topic><topic>Soluble biological markers</topic><topic>Statistical</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eilers, Paul H C</creatorcontrib><creatorcontrib>Röder, Esther</creatorcontrib><creatorcontrib>Savelkoul, Huub F J</creatorcontrib><creatorcontrib>van Wijk, Roy Gerth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eilers, Paul H C</au><au>Röder, Esther</au><au>Savelkoul, Huub F J</au><au>van Wijk, Roy Gerth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile regression for the statistical analysis of immunological data with many non-detects</atitle><jtitle>BMC immunology</jtitle><addtitle>BMC Immunol</addtitle><date>2012-07-07</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>1471-2172</issn><eissn>1471-2172</eissn><abstract>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>22769433</pmid><doi>10.1186/1471-2172-13-37</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2172
ispartof BMC immunology, 2012-07, Vol.13 (1), p.37-37, Article 37
issn 1471-2172
1471-2172
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ae38a62433784506945958fe78c60146
source Publicly Available Content Database; PubMed Central
subjects Analysis
Animals
Data analysis
Economic models
Expected values
Humans
Immunologic Tests - methods
Immunological data
immunotherapy
Information management
Medical research
Medicine, Experimental
Methodology
Models, Statistical
Non-detects
Observer Variation
Outliers
Quantile regression
Regression Analysis
Research Design
Robustness
Soluble biological markers
Statistical
Statistical analysis
Studies
title Quantile regression for the statistical analysis of immunological data with many non-detects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20regression%20for%20the%20statistical%20analysis%20of%20immunological%20data%20with%20many%20non-detects&rft.jtitle=BMC%20immunology&rft.au=Eilers,%20Paul%20H%20C&rft.date=2012-07-07&rft.volume=13&rft.issue=1&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=1471-2172&rft.eissn=1471-2172&rft_id=info:doi/10.1186/1471-2172-13-37&rft_dat=%3Cgale_doaj_%3EA534123720%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1080766043&rft_id=info:pmid/22769433&rft_galeid=A534123720&rfr_iscdi=true