Loading…
Quantile regression for the statistical analysis of immunological data with many non-detects
Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques curren...
Saved in:
Published in: | BMC immunology 2012-07, Vol.13 (1), p.37-37, Article 37 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3 |
---|---|
cites | cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 37 |
container_title | BMC immunology |
container_volume | 13 |
creator | Eilers, Paul H C Röder, Esther Savelkoul, Huub F J van Wijk, Roy Gerth |
description | Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects.
Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects.
Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects. |
doi_str_mv | 10.1186/1471-2172-13-37 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae38a62433784506945958fe78c60146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534123720</galeid><doaj_id>oai_doaj_org_article_ae38a62433784506945958fe78c60146</doaj_id><sourcerecordid>A534123720</sourcerecordid><originalsourceid>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</originalsourceid><addsrcrecordid>eNp1k8lv1DAUhyMEoqVw5oYicYFDWm_xwgGpVCwjVUJsNyTLcZyMq8RubYdh_nucmTJqUJElO3rv9z6_xSmK5xCcQsjpGSQMVggyVEFcYfagOD5YHt75PiqexHgFAGQc8cfFEUKMCoLxcfHzy6RcsoMpg-mDidF6V3Y-lGltyphUsjFZrYZSOTVso42l70o7jpPzg-93nlYlVW5sWpejctvSeVe1Jhmd4tPiUaeGaJ7dnifFjw_vv198qi4_f1xdnF9WDRU8VUyAuoaUI0Eo0owTXiOGW8q0qLuaQEBq2gkEBGqwoswIwwTlDewEazQADT4pVntu69WVvA52VGErvbJyZ_ChlyrkMgYjlcFcUZRrz_fUIHehFjXvDOOaAkhoZr3ZszaqN866vEmngrZxBxxsE2b4ZgrSDfNxPTVRElxDIHLw231wNo6m1caloIZFRkuPs2vZ-18SE8IoZRnwbg9orP8PYOnRfpTzmOU8ZgmxxDPk1W0Wwd9MJiY52qjNMChn_BQlzGUjUBM0J_zyH-mVn0Ie9aziIOcEcqsOql7lFlrX-Xy3nqHyvMYEIswQyKrTe1R5tWa02jvT5We2DHi9CMiaZH6nXk0xytW3r0vt2V6rg48xmO7QEwjk_Cvc04UXd2dx0P99-_gPyM4Brg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080766043</pqid></control><display><type>article</type><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</creator><creatorcontrib>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</creatorcontrib><description>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects.
Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects.
Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</description><identifier>ISSN: 1471-2172</identifier><identifier>EISSN: 1471-2172</identifier><identifier>DOI: 10.1186/1471-2172-13-37</identifier><identifier>PMID: 22769433</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Data analysis ; Economic models ; Expected values ; Humans ; Immunologic Tests - methods ; Immunological data ; immunotherapy ; Information management ; Medical research ; Medicine, Experimental ; Methodology ; Models, Statistical ; Non-detects ; Observer Variation ; Outliers ; Quantile regression ; Regression Analysis ; Research Design ; Robustness ; Soluble biological markers ; Statistical ; Statistical analysis ; Studies</subject><ispartof>BMC immunology, 2012-07, Vol.13 (1), p.37-37, Article 37</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><rights>2012 Eilers et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2012 Eilers et al.; licensee BioMed Central Ltd. 2012 Eilers et al.; licensee BioMed Central Ltd.</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</citedby><cites>FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1080766043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22769433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eilers, Paul H C</creatorcontrib><creatorcontrib>Röder, Esther</creatorcontrib><creatorcontrib>Savelkoul, Huub F J</creatorcontrib><creatorcontrib>van Wijk, Roy Gerth</creatorcontrib><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><title>BMC immunology</title><addtitle>BMC Immunol</addtitle><description>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects.
Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects.
Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</description><subject>Analysis</subject><subject>Animals</subject><subject>Data analysis</subject><subject>Economic models</subject><subject>Expected values</subject><subject>Humans</subject><subject>Immunologic Tests - methods</subject><subject>Immunological data</subject><subject>immunotherapy</subject><subject>Information management</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methodology</subject><subject>Models, Statistical</subject><subject>Non-detects</subject><subject>Observer Variation</subject><subject>Outliers</subject><subject>Quantile regression</subject><subject>Regression Analysis</subject><subject>Research Design</subject><subject>Robustness</subject><subject>Soluble biological markers</subject><subject>Statistical</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>1471-2172</issn><issn>1471-2172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1k8lv1DAUhyMEoqVw5oYicYFDWm_xwgGpVCwjVUJsNyTLcZyMq8RubYdh_nucmTJqUJElO3rv9z6_xSmK5xCcQsjpGSQMVggyVEFcYfagOD5YHt75PiqexHgFAGQc8cfFEUKMCoLxcfHzy6RcsoMpg-mDidF6V3Y-lGltyphUsjFZrYZSOTVso42l70o7jpPzg-93nlYlVW5sWpejctvSeVe1Jhmd4tPiUaeGaJ7dnifFjw_vv198qi4_f1xdnF9WDRU8VUyAuoaUI0Eo0owTXiOGW8q0qLuaQEBq2gkEBGqwoswIwwTlDewEazQADT4pVntu69WVvA52VGErvbJyZ_ChlyrkMgYjlcFcUZRrz_fUIHehFjXvDOOaAkhoZr3ZszaqN866vEmngrZxBxxsE2b4ZgrSDfNxPTVRElxDIHLw231wNo6m1caloIZFRkuPs2vZ-18SE8IoZRnwbg9orP8PYOnRfpTzmOU8ZgmxxDPk1W0Wwd9MJiY52qjNMChn_BQlzGUjUBM0J_zyH-mVn0Ie9aziIOcEcqsOql7lFlrX-Xy3nqHyvMYEIswQyKrTe1R5tWa02jvT5We2DHi9CMiaZH6nXk0xytW3r0vt2V6rg48xmO7QEwjk_Cvc04UXd2dx0P99-_gPyM4Brg</recordid><startdate>20120707</startdate><enddate>20120707</enddate><creator>Eilers, Paul H C</creator><creator>Röder, Esther</creator><creator>Savelkoul, Huub F J</creator><creator>van Wijk, Roy Gerth</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20120707</creationdate><title>Quantile regression for the statistical analysis of immunological data with many non-detects</title><author>Eilers, Paul H C ; Röder, Esther ; Savelkoul, Huub F J ; van Wijk, Roy Gerth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Data analysis</topic><topic>Economic models</topic><topic>Expected values</topic><topic>Humans</topic><topic>Immunologic Tests - methods</topic><topic>Immunological data</topic><topic>immunotherapy</topic><topic>Information management</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methodology</topic><topic>Models, Statistical</topic><topic>Non-detects</topic><topic>Observer Variation</topic><topic>Outliers</topic><topic>Quantile regression</topic><topic>Regression Analysis</topic><topic>Research Design</topic><topic>Robustness</topic><topic>Soluble biological markers</topic><topic>Statistical</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eilers, Paul H C</creatorcontrib><creatorcontrib>Röder, Esther</creatorcontrib><creatorcontrib>Savelkoul, Huub F J</creatorcontrib><creatorcontrib>van Wijk, Roy Gerth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eilers, Paul H C</au><au>Röder, Esther</au><au>Savelkoul, Huub F J</au><au>van Wijk, Roy Gerth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile regression for the statistical analysis of immunological data with many non-detects</atitle><jtitle>BMC immunology</jtitle><addtitle>BMC Immunol</addtitle><date>2012-07-07</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>1471-2172</issn><eissn>1471-2172</eissn><abstract>Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects.
Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects.
Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>22769433</pmid><doi>10.1186/1471-2172-13-37</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2172 |
ispartof | BMC immunology, 2012-07, Vol.13 (1), p.37-37, Article 37 |
issn | 1471-2172 1471-2172 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ae38a62433784506945958fe78c60146 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Animals Data analysis Economic models Expected values Humans Immunologic Tests - methods Immunological data immunotherapy Information management Medical research Medicine, Experimental Methodology Models, Statistical Non-detects Observer Variation Outliers Quantile regression Regression Analysis Research Design Robustness Soluble biological markers Statistical Statistical analysis Studies |
title | Quantile regression for the statistical analysis of immunological data with many non-detects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20regression%20for%20the%20statistical%20analysis%20of%20immunological%20data%20with%20many%20non-detects&rft.jtitle=BMC%20immunology&rft.au=Eilers,%20Paul%20H%20C&rft.date=2012-07-07&rft.volume=13&rft.issue=1&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=1471-2172&rft.eissn=1471-2172&rft_id=info:doi/10.1186/1471-2172-13-37&rft_dat=%3Cgale_doaj_%3EA534123720%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b698t-7905516829462c78485273d67c95f5410456f92092b3a67e9e7968b1f97bc00b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1080766043&rft_id=info:pmid/22769433&rft_galeid=A534123720&rfr_iscdi=true |