Loading…
Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems
Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen dat...
Saved in:
Published in: | Cleaner Engineering and Technology 2024-06, Vol.20, p.100754, Article 100754 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113 |
container_end_page | |
container_issue | |
container_start_page | 100754 |
container_title | Cleaner Engineering and Technology |
container_volume | 20 |
creator | AL-Rousan, Nadia AL-Najjar, Hazem |
description | Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks. |
doi_str_mv | 10.1016/j.clet.2024.100754 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266679082400034X</els_id><doaj_id>oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70</doaj_id><sourcerecordid>S266679082400034X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsGhfwKu8QGv-drML3kjxp1DojV6HaTLbZt1uShIr9elNrYhXzs0Mw5zDma8obhidMsqq225qekxTTrnMC6pKeVaMeFVVE9XQ-vzPfFmMY-wopbxkgrN6VGyWu-S27hMtsYg7MuB7gD639OHDG0meYMwHkJD44HBIkJwfCAzrHiNpfSDR9xDIbuOT3_s-gTORuCFh37t1vifxEBNu43Vx0UIfcfzTr4rXx4eX2fNksXyaz-4XEyMqliYKmqplNZZ8pYzkdVkbrlglwHLRQC4UtOHSqJYaKbi1AkGqGtGKUiFj4qqYn3yth07vQs4eDtqD098LH9YaQnKZmAaUFGtmLeOlXDVNLYVsSlhxUyoARbMXP3mZ4GMM2P76MaqP6HWnj-j1Eb0-oc-iu5MI85d7h0FHk8EZtC6gSTmG-0_-BTPDjuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><source>ScienceDirect (Online service)</source><creator>AL-Rousan, Nadia ; AL-Najjar, Hazem</creator><creatorcontrib>AL-Rousan, Nadia ; AL-Najjar, Hazem</creatorcontrib><description>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</description><identifier>ISSN: 2666-7908</identifier><identifier>EISSN: 2666-7908</identifier><identifier>DOI: 10.1016/j.clet.2024.100754</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Intelligent system ; Least square residual ; Multilayer perceptron ; Orientation angle ; Quadratic polynomial ; Single axis tracker ; Solar photovoltaics</subject><ispartof>Cleaner Engineering and Technology, 2024-06, Vol.20, p.100754, Article 100754</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</cites><orcidid>0000-0001-8451-898X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266679082400034X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>AL-Rousan, Nadia</creatorcontrib><creatorcontrib>AL-Najjar, Hazem</creatorcontrib><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><title>Cleaner Engineering and Technology</title><description>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</description><subject>Intelligent system</subject><subject>Least square residual</subject><subject>Multilayer perceptron</subject><subject>Orientation angle</subject><subject>Quadratic polynomial</subject><subject>Single axis tracker</subject><subject>Solar photovoltaics</subject><issn>2666-7908</issn><issn>2666-7908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kN1KAzEQhRdRsGhfwKu8QGv-drML3kjxp1DojV6HaTLbZt1uShIr9elNrYhXzs0Mw5zDma8obhidMsqq225qekxTTrnMC6pKeVaMeFVVE9XQ-vzPfFmMY-wopbxkgrN6VGyWu-S27hMtsYg7MuB7gD639OHDG0meYMwHkJD44HBIkJwfCAzrHiNpfSDR9xDIbuOT3_s-gTORuCFh37t1vifxEBNu43Vx0UIfcfzTr4rXx4eX2fNksXyaz-4XEyMqliYKmqplNZZ8pYzkdVkbrlglwHLRQC4UtOHSqJYaKbi1AkGqGtGKUiFj4qqYn3yth07vQs4eDtqD098LH9YaQnKZmAaUFGtmLeOlXDVNLYVsSlhxUyoARbMXP3mZ4GMM2P76MaqP6HWnj-j1Eb0-oc-iu5MI85d7h0FHk8EZtC6gSTmG-0_-BTPDjuQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>AL-Rousan, Nadia</creator><creator>AL-Najjar, Hazem</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8451-898X</orcidid></search><sort><creationdate>202406</creationdate><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><author>AL-Rousan, Nadia ; AL-Najjar, Hazem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intelligent system</topic><topic>Least square residual</topic><topic>Multilayer perceptron</topic><topic>Orientation angle</topic><topic>Quadratic polynomial</topic><topic>Single axis tracker</topic><topic>Solar photovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Rousan, Nadia</creatorcontrib><creatorcontrib>AL-Najjar, Hazem</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Cleaner Engineering and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Rousan, Nadia</au><au>AL-Najjar, Hazem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</atitle><jtitle>Cleaner Engineering and Technology</jtitle><date>2024-06</date><risdate>2024</risdate><volume>20</volume><spage>100754</spage><pages>100754-</pages><artnum>100754</artnum><issn>2666-7908</issn><eissn>2666-7908</eissn><abstract>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.clet.2024.100754</doi><orcidid>https://orcid.org/0000-0001-8451-898X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-7908 |
ispartof | Cleaner Engineering and Technology, 2024-06, Vol.20, p.100754, Article 100754 |
issn | 2666-7908 2666-7908 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70 |
source | ScienceDirect (Online service) |
subjects | Intelligent system Least square residual Multilayer perceptron Orientation angle Quadratic polynomial Single axis tracker Solar photovoltaics |
title | Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20deep%20neural%20network%20to%20estimate%20orientation%20angles%20for%20solar%20photovoltaics%20intelligent%20systems&rft.jtitle=Cleaner%20Engineering%20and%20Technology&rft.au=AL-Rousan,%20Nadia&rft.date=2024-06&rft.volume=20&rft.spage=100754&rft.pages=100754-&rft.artnum=100754&rft.issn=2666-7908&rft.eissn=2666-7908&rft_id=info:doi/10.1016/j.clet.2024.100754&rft_dat=%3Celsevier_doaj_%3ES266679082400034X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |