Loading…

Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems

Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen dat...

Full description

Saved in:
Bibliographic Details
Published in:Cleaner Engineering and Technology 2024-06, Vol.20, p.100754, Article 100754
Main Authors: AL-Rousan, Nadia, AL-Najjar, Hazem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113
container_end_page
container_issue
container_start_page 100754
container_title Cleaner Engineering and Technology
container_volume 20
creator AL-Rousan, Nadia
AL-Najjar, Hazem
description Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.
doi_str_mv 10.1016/j.clet.2024.100754
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266679082400034X</els_id><doaj_id>oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70</doaj_id><sourcerecordid>S266679082400034X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsGhfwKu8QGv-drML3kjxp1DojV6HaTLbZt1uShIr9elNrYhXzs0Mw5zDma8obhidMsqq225qekxTTrnMC6pKeVaMeFVVE9XQ-vzPfFmMY-wopbxkgrN6VGyWu-S27hMtsYg7MuB7gD639OHDG0meYMwHkJD44HBIkJwfCAzrHiNpfSDR9xDIbuOT3_s-gTORuCFh37t1vifxEBNu43Vx0UIfcfzTr4rXx4eX2fNksXyaz-4XEyMqliYKmqplNZZ8pYzkdVkbrlglwHLRQC4UtOHSqJYaKbi1AkGqGtGKUiFj4qqYn3yth07vQs4eDtqD098LH9YaQnKZmAaUFGtmLeOlXDVNLYVsSlhxUyoARbMXP3mZ4GMM2P76MaqP6HWnj-j1Eb0-oc-iu5MI85d7h0FHk8EZtC6gSTmG-0_-BTPDjuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><source>ScienceDirect (Online service)</source><creator>AL-Rousan, Nadia ; AL-Najjar, Hazem</creator><creatorcontrib>AL-Rousan, Nadia ; AL-Najjar, Hazem</creatorcontrib><description>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</description><identifier>ISSN: 2666-7908</identifier><identifier>EISSN: 2666-7908</identifier><identifier>DOI: 10.1016/j.clet.2024.100754</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Intelligent system ; Least square residual ; Multilayer perceptron ; Orientation angle ; Quadratic polynomial ; Single axis tracker ; Solar photovoltaics</subject><ispartof>Cleaner Engineering and Technology, 2024-06, Vol.20, p.100754, Article 100754</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</cites><orcidid>0000-0001-8451-898X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266679082400034X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>AL-Rousan, Nadia</creatorcontrib><creatorcontrib>AL-Najjar, Hazem</creatorcontrib><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><title>Cleaner Engineering and Technology</title><description>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</description><subject>Intelligent system</subject><subject>Least square residual</subject><subject>Multilayer perceptron</subject><subject>Orientation angle</subject><subject>Quadratic polynomial</subject><subject>Single axis tracker</subject><subject>Solar photovoltaics</subject><issn>2666-7908</issn><issn>2666-7908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kN1KAzEQhRdRsGhfwKu8QGv-drML3kjxp1DojV6HaTLbZt1uShIr9elNrYhXzs0Mw5zDma8obhidMsqq225qekxTTrnMC6pKeVaMeFVVE9XQ-vzPfFmMY-wopbxkgrN6VGyWu-S27hMtsYg7MuB7gD639OHDG0meYMwHkJD44HBIkJwfCAzrHiNpfSDR9xDIbuOT3_s-gTORuCFh37t1vifxEBNu43Vx0UIfcfzTr4rXx4eX2fNksXyaz-4XEyMqliYKmqplNZZ8pYzkdVkbrlglwHLRQC4UtOHSqJYaKbi1AkGqGtGKUiFj4qqYn3yth07vQs4eDtqD098LH9YaQnKZmAaUFGtmLeOlXDVNLYVsSlhxUyoARbMXP3mZ4GMM2P76MaqP6HWnj-j1Eb0-oc-iu5MI85d7h0FHk8EZtC6gSTmG-0_-BTPDjuQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>AL-Rousan, Nadia</creator><creator>AL-Najjar, Hazem</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8451-898X</orcidid></search><sort><creationdate>202406</creationdate><title>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</title><author>AL-Rousan, Nadia ; AL-Najjar, Hazem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intelligent system</topic><topic>Least square residual</topic><topic>Multilayer perceptron</topic><topic>Orientation angle</topic><topic>Quadratic polynomial</topic><topic>Single axis tracker</topic><topic>Solar photovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Rousan, Nadia</creatorcontrib><creatorcontrib>AL-Najjar, Hazem</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Cleaner Engineering and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Rousan, Nadia</au><au>AL-Najjar, Hazem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems</atitle><jtitle>Cleaner Engineering and Technology</jtitle><date>2024-06</date><risdate>2024</risdate><volume>20</volume><spage>100754</spage><pages>100754-</pages><artnum>100754</artnum><issn>2666-7908</issn><eissn>2666-7908</eissn><abstract>Using a single hidden layer neural network in estimating orientation angles for solar photovoltaics lacks the complexity required to model nonlinear relationships between input variables and the optimal orientation angles for solar photovoltaics. It struggles to generalize well to new and unseen data. More sophisticated neural network architectures such as deep learning with multi-hidden perceptron (MLP) can solve these issues by changing the architecture by deepening the network. Deepening the network will increase complexity, energy consumption, and time complexity. The study uses a novel approach to outperform traditional MLP models with two, three, four, and five hidden layers. An innovative approach was proposed by enhancing a single hidden layer MLP with a quadratic polynomial function, utilizing two robust methodologies, Least Absolute Residuals (LAR) and Bisquare methods. The results demonstrate that these approaches yield significant improvements in Root Mean Square Error (RMSE) and coefficient of determination (R squared). LAR-based MLP showed superiority over both bisquare-based and conventional MLPs methods in R2 and RMSE, ranging from 1.13 to 1.18 and 2.53 to 3.06, respectively. The study outperformed conventional MLP architectures with five hidden layers regarding accuracy and efficiency. The proposed model offers a more effective and less complex solution for data prediction tasks.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.clet.2024.100754</doi><orcidid>https://orcid.org/0000-0001-8451-898X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-7908
ispartof Cleaner Engineering and Technology, 2024-06, Vol.20, p.100754, Article 100754
issn 2666-7908
2666-7908
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ae40e81dd1254b99843495ab2c57aa70
source ScienceDirect (Online service)
subjects Intelligent system
Least square residual
Multilayer perceptron
Orientation angle
Quadratic polynomial
Single axis tracker
Solar photovoltaics
title Optimized deep neural network to estimate orientation angles for solar photovoltaics intelligent systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20deep%20neural%20network%20to%20estimate%20orientation%20angles%20for%20solar%20photovoltaics%20intelligent%20systems&rft.jtitle=Cleaner%20Engineering%20and%20Technology&rft.au=AL-Rousan,%20Nadia&rft.date=2024-06&rft.volume=20&rft.spage=100754&rft.pages=100754-&rft.artnum=100754&rft.issn=2666-7908&rft.eissn=2666-7908&rft_id=info:doi/10.1016/j.clet.2024.100754&rft_dat=%3Celsevier_doaj_%3ES266679082400034X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-7a96f18e52b7c42858c27163ad239aaaae30924c7f0c432dd3ea478eed357e113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true