Loading…

On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems

This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set aro...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied mathematics and computer science 2023-03, Vol.33 (1), p.71-82
Main Authors: Ordaz, Patricio, Alazki, Hussain, Sánchez, Bonifacio, Ordaz-Oliver, Mario
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 82
container_issue 1
container_start_page 71
container_title International journal of applied mathematics and computer science
container_volume 33
creator Ordaz, Patricio
Alazki, Hussain
Sánchez, Bonifacio
Ordaz-Oliver, Mario
description This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.
doi_str_mv 10.34768/amcs-2023-0006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755</doaj_id><sourcerecordid>2791868367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3</originalsourceid><addsrcrecordid>eNp1kc1rFEEQxRtRcI2evTZ4HtMfM_0BXmQ1JhAIZJOQW1PdUxN7mZ2O3T3I-tc7mw16yqmK4r1XD36EfOTss2y1MqewC6URTMiGMaZekZVgRjamteI1WXHV8sZodf-WvCtly5iwTMsV2VxNtP5EehanWJHexB3STQUfx_gHakwTvYtAr5OfS6XrNNWcRjqkTG-ngLlCnOi3WOqcPfZ0sy8Vd-U9eTPAWPDD8zwht2ffb9bnzeXVj4v118smSCNr04Ugh856bQaNGq1ABG5Mx5gHawaEoI0wilvptZdd0OClXHqDsKLvJMgTcnHM7RNs3WOOO8h7lyC6p0PKDw5yjWFEB9gObR-g4wJaj8pyNRjdW86sEbrrlqxPx6zHnH7NWKrbpjlPS30ntOVGGan0ojo9qkJOpWQc_n3lzD1RcAcK7kDBHSgsji9Hx28YK-YeH_K8X5b_8S85Jddc_gUaOo5M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791868367</pqid></control><display><type>article</type><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><source>Freely Accessible Journals</source><source>Publicly Available Content Database</source><creator>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</creator><creatorcontrib>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</creatorcontrib><description>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</description><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.34768/amcs-2023-0006</identifier><language>eng</language><publisher>Zielona Góra: Sciendo</publisher><subject>Algorithms ; Closed loops ; Control systems ; Controllers ; Design ; Feedback control ; finite time bounded stability ; Inequality ; Linear matrix inequalities ; Mathematical analysis ; Optimization ; Robust control ; robust stabilization ; Stabilization ; Systems stability ; Trajectories ; ultimate bound minimization ; uncertain disturbed systems ; Unmanned aerial vehicles</subject><ispartof>International journal of applied mathematics and computer science, 2023-03, Vol.33 (1), p.71-82</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2791868367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ordaz, Patricio</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Sánchez, Bonifacio</creatorcontrib><creatorcontrib>Ordaz-Oliver, Mario</creatorcontrib><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</description><subject>Algorithms</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Feedback control</subject><subject>finite time bounded stability</subject><subject>Inequality</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Robust control</subject><subject>robust stabilization</subject><subject>Stabilization</subject><subject>Systems stability</subject><subject>Trajectories</subject><subject>ultimate bound minimization</subject><subject>uncertain disturbed systems</subject><subject>Unmanned aerial vehicles</subject><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1rFEEQxRtRcI2evTZ4HtMfM_0BXmQ1JhAIZJOQW1PdUxN7mZ2O3T3I-tc7mw16yqmK4r1XD36EfOTss2y1MqewC6URTMiGMaZekZVgRjamteI1WXHV8sZodf-WvCtly5iwTMsV2VxNtP5EehanWJHexB3STQUfx_gHakwTvYtAr5OfS6XrNNWcRjqkTG-ngLlCnOi3WOqcPfZ0sy8Vd-U9eTPAWPDD8zwht2ffb9bnzeXVj4v118smSCNr04Ugh856bQaNGq1ABG5Mx5gHawaEoI0wilvptZdd0OClXHqDsKLvJMgTcnHM7RNs3WOOO8h7lyC6p0PKDw5yjWFEB9gObR-g4wJaj8pyNRjdW86sEbrrlqxPx6zHnH7NWKrbpjlPS30ntOVGGan0ojo9qkJOpWQc_n3lzD1RcAcK7kDBHSgsji9Hx28YK-YeH_K8X5b_8S85Jddc_gUaOo5M</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ordaz, Patricio</creator><creator>Alazki, Hussain</creator><creator>Sánchez, Bonifacio</creator><creator>Ordaz-Oliver, Mario</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20230301</creationdate><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><author>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Feedback control</topic><topic>finite time bounded stability</topic><topic>Inequality</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Robust control</topic><topic>robust stabilization</topic><topic>Stabilization</topic><topic>Systems stability</topic><topic>Trajectories</topic><topic>ultimate bound minimization</topic><topic>uncertain disturbed systems</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordaz, Patricio</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Sánchez, Bonifacio</creatorcontrib><creatorcontrib>Ordaz-Oliver, Mario</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordaz, Patricio</au><au>Alazki, Hussain</au><au>Sánchez, Bonifacio</au><au>Ordaz-Oliver, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</abstract><cop>Zielona Góra</cop><pub>Sciendo</pub><doi>10.34768/amcs-2023-0006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1641-876X
ispartof International journal of applied mathematics and computer science, 2023-03, Vol.33 (1), p.71-82
issn 1641-876X
2083-8492
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755
source Freely Accessible Journals; Publicly Available Content Database
subjects Algorithms
Closed loops
Control systems
Controllers
Design
Feedback control
finite time bounded stability
Inequality
Linear matrix inequalities
Mathematical analysis
Optimization
Robust control
robust stabilization
Stabilization
Systems stability
Trajectories
ultimate bound minimization
uncertain disturbed systems
Unmanned aerial vehicles
title On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Finite%20Time%20Stabilization%20Via%20Robust%20Control%20for%20Uncertain%20Disturbed%20Systems&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Ordaz,%20Patricio&rft.date=2023-03-01&rft.volume=33&rft.issue=1&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=1641-876X&rft.eissn=2083-8492&rft_id=info:doi/10.34768/amcs-2023-0006&rft_dat=%3Cproquest_doaj_%3E2791868367%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791868367&rft_id=info:pmid/&rfr_iscdi=true