Loading…
On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems
This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set aro...
Saved in:
Published in: | International journal of applied mathematics and computer science 2023-03, Vol.33 (1), p.71-82 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 82 |
container_issue | 1 |
container_start_page | 71 |
container_title | International journal of applied mathematics and computer science |
container_volume | 33 |
creator | Ordaz, Patricio Alazki, Hussain Sánchez, Bonifacio Ordaz-Oliver, Mario |
description | This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight. |
doi_str_mv | 10.34768/amcs-2023-0006 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755</doaj_id><sourcerecordid>2791868367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3</originalsourceid><addsrcrecordid>eNp1kc1rFEEQxRtRcI2evTZ4HtMfM_0BXmQ1JhAIZJOQW1PdUxN7mZ2O3T3I-tc7mw16yqmK4r1XD36EfOTss2y1MqewC6URTMiGMaZekZVgRjamteI1WXHV8sZodf-WvCtly5iwTMsV2VxNtP5EehanWJHexB3STQUfx_gHakwTvYtAr5OfS6XrNNWcRjqkTG-ngLlCnOi3WOqcPfZ0sy8Vd-U9eTPAWPDD8zwht2ffb9bnzeXVj4v118smSCNr04Ugh856bQaNGq1ABG5Mx5gHawaEoI0wilvptZdd0OClXHqDsKLvJMgTcnHM7RNs3WOOO8h7lyC6p0PKDw5yjWFEB9gObR-g4wJaj8pyNRjdW86sEbrrlqxPx6zHnH7NWKrbpjlPS30ntOVGGan0ojo9qkJOpWQc_n3lzD1RcAcK7kDBHSgsji9Hx28YK-YeH_K8X5b_8S85Jddc_gUaOo5M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791868367</pqid></control><display><type>article</type><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><source>Freely Accessible Journals</source><source>Publicly Available Content Database</source><creator>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</creator><creatorcontrib>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</creatorcontrib><description>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</description><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.34768/amcs-2023-0006</identifier><language>eng</language><publisher>Zielona Góra: Sciendo</publisher><subject>Algorithms ; Closed loops ; Control systems ; Controllers ; Design ; Feedback control ; finite time bounded stability ; Inequality ; Linear matrix inequalities ; Mathematical analysis ; Optimization ; Robust control ; robust stabilization ; Stabilization ; Systems stability ; Trajectories ; ultimate bound minimization ; uncertain disturbed systems ; Unmanned aerial vehicles</subject><ispartof>International journal of applied mathematics and computer science, 2023-03, Vol.33 (1), p.71-82</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2791868367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ordaz, Patricio</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Sánchez, Bonifacio</creatorcontrib><creatorcontrib>Ordaz-Oliver, Mario</creatorcontrib><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</description><subject>Algorithms</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Feedback control</subject><subject>finite time bounded stability</subject><subject>Inequality</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Robust control</subject><subject>robust stabilization</subject><subject>Stabilization</subject><subject>Systems stability</subject><subject>Trajectories</subject><subject>ultimate bound minimization</subject><subject>uncertain disturbed systems</subject><subject>Unmanned aerial vehicles</subject><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1rFEEQxRtRcI2evTZ4HtMfM_0BXmQ1JhAIZJOQW1PdUxN7mZ2O3T3I-tc7mw16yqmK4r1XD36EfOTss2y1MqewC6URTMiGMaZekZVgRjamteI1WXHV8sZodf-WvCtly5iwTMsV2VxNtP5EehanWJHexB3STQUfx_gHakwTvYtAr5OfS6XrNNWcRjqkTG-ngLlCnOi3WOqcPfZ0sy8Vd-U9eTPAWPDD8zwht2ffb9bnzeXVj4v118smSCNr04Ugh856bQaNGq1ABG5Mx5gHawaEoI0wilvptZdd0OClXHqDsKLvJMgTcnHM7RNs3WOOO8h7lyC6p0PKDw5yjWFEB9gObR-g4wJaj8pyNRjdW86sEbrrlqxPx6zHnH7NWKrbpjlPS30ntOVGGan0ojo9qkJOpWQc_n3lzD1RcAcK7kDBHSgsji9Hx28YK-YeH_K8X5b_8S85Jddc_gUaOo5M</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ordaz, Patricio</creator><creator>Alazki, Hussain</creator><creator>Sánchez, Bonifacio</creator><creator>Ordaz-Oliver, Mario</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20230301</creationdate><title>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</title><author>Ordaz, Patricio ; Alazki, Hussain ; Sánchez, Bonifacio ; Ordaz-Oliver, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Feedback control</topic><topic>finite time bounded stability</topic><topic>Inequality</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Robust control</topic><topic>robust stabilization</topic><topic>Stabilization</topic><topic>Systems stability</topic><topic>Trajectories</topic><topic>ultimate bound minimization</topic><topic>uncertain disturbed systems</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordaz, Patricio</creatorcontrib><creatorcontrib>Alazki, Hussain</creatorcontrib><creatorcontrib>Sánchez, Bonifacio</creatorcontrib><creatorcontrib>Ordaz-Oliver, Mario</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordaz, Patricio</au><au>Alazki, Hussain</au><au>Sánchez, Bonifacio</au><au>Ordaz-Oliver, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.</abstract><cop>Zielona Góra</cop><pub>Sciendo</pub><doi>10.34768/amcs-2023-0006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1641-876X |
ispartof | International journal of applied mathematics and computer science, 2023-03, Vol.33 (1), p.71-82 |
issn | 1641-876X 2083-8492 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ae4f4dca512a4be6916f87d910982755 |
source | Freely Accessible Journals; Publicly Available Content Database |
subjects | Algorithms Closed loops Control systems Controllers Design Feedback control finite time bounded stability Inequality Linear matrix inequalities Mathematical analysis Optimization Robust control robust stabilization Stabilization Systems stability Trajectories ultimate bound minimization uncertain disturbed systems Unmanned aerial vehicles |
title | On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Finite%20Time%20Stabilization%20Via%20Robust%20Control%20for%20Uncertain%20Disturbed%20Systems&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Ordaz,%20Patricio&rft.date=2023-03-01&rft.volume=33&rft.issue=1&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=1641-876X&rft.eissn=2083-8492&rft_id=info:doi/10.34768/amcs-2023-0006&rft_dat=%3Cproquest_doaj_%3E2791868367%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-5cc3f59b78f7e7e92eea188500ba98feac78286193b7b35c7ab33029a292d53a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791868367&rft_id=info:pmid/&rfr_iscdi=true |