Loading…
Robust Queen Bee Assisted Genetic Algorithm (QBGA) Optimized Fractional Order PID (FOPID) Controller for Not Necessarily Minimum Phase Power Converters
Power electronic converters find application in diverse fields due to their high power conversion efficiency. Converters are often characterized by time response specifications, robustness and stability. Conventionally, converters employ the classic PID controller. The state space average linear tim...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.93331-93337 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Power electronic converters find application in diverse fields due to their high power conversion efficiency. Converters are often characterized by time response specifications, robustness and stability. Conventionally, converters employ the classic PID controller. The state space average linear time invariant model of a boost converter is known to be a non-minimum phase system. This paper demonstrates that the boost converter with a PID controller using the Queen Bee assisted Genetic Algorithm (QBGA) optimization is not robust to plant parameter variations. A fractional order PID controller based on QBGA optimization proposed here is shown to have improved robustness. The controller proposed here is applicable across converters, viz., buck, boost and buck-boost, equally. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3092215 |