Loading…
Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability
Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not w...
Saved in:
Published in: | mBio 2016-12, Vol.7 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | mBio |
container_volume | 7 |
creator | Hawver, Lisa A Giulietti, Jennifer M Baleja, James D Ng, Wai-Leung |
description | Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability.
Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications |
doi_str_mv | 10.1128/mBio.01863-16 |
format | article |
fullrecord | <record><control><sourceid>pubmed_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ae97de37ac5347559491c6428f75da83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae97de37ac5347559491c6428f75da83</doaj_id><sourcerecordid>27923919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113</originalsourceid><addsrcrecordid>eNpVkdFq3DAQRUVpaUKax74W_YBTjyRb1kuhXdI0kNCUTZ_FWJa3CrZkJHvJfkT_uXK2Dc2AmIvmzhHiEvIeygsA1nwcv7hwUUJT8wLqV-SUQVUWsgJ4veoaCgZMnZDzlB7KXJxDw8u35IRJxbgCdUp-_1hCXEa6tT45v6ObEGLnPM42rXqyEWe3t_TycYo2JRc8DT29O8Rlnz301s7YhsGlkV5Zn3fuA71F5-d8KNLtklaF7ZAJfu9i8KP1M-1DpHdhWoYMz8RthrjBzYd35E2PQ7Lnf_sZ-fn18n7zrbj5fnW9-XxTGFHxuWiNlazhRvTWGNUgoGhR1a1RtWKdqIVE24I0tkTZV0xgJ6C1hpeN6PIA-Bm5PnK7gA96im7EeNABnX66CHGnMc7ODFajVbKzXKKpuJBVpYQCUwvW9LLqsOGZ9enImpZ2tJ3J_4s4vIC-nHj3S-_CXlcgWA0yA4ojwMSQUrT98y6Ueo1ZrzHrp5g11Nn_4f8Hn93_QuV_AJvKqKM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability</title><source>American Society for Microbiology Journals</source><source>PubMed Central</source><creator>Hawver, Lisa A ; Giulietti, Jennifer M ; Baleja, James D ; Ng, Wai-Leung</creator><contributor>Bassler, Bonnie</contributor><creatorcontrib>Hawver, Lisa A ; Giulietti, Jennifer M ; Baleja, James D ; Ng, Wai-Leung ; Bassler, Bonnie</creatorcontrib><description>Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability.
Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.</description><identifier>ISSN: 2161-2129</identifier><identifier>EISSN: 2150-7511</identifier><identifier>DOI: 10.1128/mBio.01863-16</identifier><identifier>PMID: 27923919</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Acetoin - metabolism ; Butylene Glycols - metabolism ; Carboxylic Acids - metabolism ; Gene Expression Regulation, Bacterial ; Metabolic Networks and Pathways - genetics ; Metabolomics ; Pyruvic Acid - metabolism ; Quorum Sensing ; Vibrio cholerae - growth & development ; Vibrio cholerae - metabolism ; Vibrio cholerae - physiology</subject><ispartof>mBio, 2016-12, Vol.7 (6)</ispartof><rights>Copyright © 2016 Hawver et al.</rights><rights>Copyright © 2016 Hawver et al. 2016 Hawver et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113</citedby><cites>FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142617/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142617/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27923919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bassler, Bonnie</contributor><creatorcontrib>Hawver, Lisa A</creatorcontrib><creatorcontrib>Giulietti, Jennifer M</creatorcontrib><creatorcontrib>Baleja, James D</creatorcontrib><creatorcontrib>Ng, Wai-Leung</creatorcontrib><title>Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability</title><title>mBio</title><addtitle>mBio</addtitle><description>Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability.
Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.</description><subject>Acetoin - metabolism</subject><subject>Butylene Glycols - metabolism</subject><subject>Carboxylic Acids - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolomics</subject><subject>Pyruvic Acid - metabolism</subject><subject>Quorum Sensing</subject><subject>Vibrio cholerae - growth & development</subject><subject>Vibrio cholerae - metabolism</subject><subject>Vibrio cholerae - physiology</subject><issn>2161-2129</issn><issn>2150-7511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkdFq3DAQRUVpaUKax74W_YBTjyRb1kuhXdI0kNCUTZ_FWJa3CrZkJHvJfkT_uXK2Dc2AmIvmzhHiEvIeygsA1nwcv7hwUUJT8wLqV-SUQVUWsgJ4veoaCgZMnZDzlB7KXJxDw8u35IRJxbgCdUp-_1hCXEa6tT45v6ObEGLnPM42rXqyEWe3t_TycYo2JRc8DT29O8Rlnz301s7YhsGlkV5Zn3fuA71F5-d8KNLtklaF7ZAJfu9i8KP1M-1DpHdhWoYMz8RthrjBzYd35E2PQ7Lnf_sZ-fn18n7zrbj5fnW9-XxTGFHxuWiNlazhRvTWGNUgoGhR1a1RtWKdqIVE24I0tkTZV0xgJ6C1hpeN6PIA-Bm5PnK7gA96im7EeNABnX66CHGnMc7ODFajVbKzXKKpuJBVpYQCUwvW9LLqsOGZ9enImpZ2tJ3J_4s4vIC-nHj3S-_CXlcgWA0yA4ojwMSQUrT98y6Ueo1ZrzHrp5g11Nn_4f8Hn93_QuV_AJvKqKM</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Hawver, Lisa A</creator><creator>Giulietti, Jennifer M</creator><creator>Baleja, James D</creator><creator>Ng, Wai-Leung</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161206</creationdate><title>Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability</title><author>Hawver, Lisa A ; Giulietti, Jennifer M ; Baleja, James D ; Ng, Wai-Leung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetoin - metabolism</topic><topic>Butylene Glycols - metabolism</topic><topic>Carboxylic Acids - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolomics</topic><topic>Pyruvic Acid - metabolism</topic><topic>Quorum Sensing</topic><topic>Vibrio cholerae - growth & development</topic><topic>Vibrio cholerae - metabolism</topic><topic>Vibrio cholerae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawver, Lisa A</creatorcontrib><creatorcontrib>Giulietti, Jennifer M</creatorcontrib><creatorcontrib>Baleja, James D</creatorcontrib><creatorcontrib>Ng, Wai-Leung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>mBio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawver, Lisa A</au><au>Giulietti, Jennifer M</au><au>Baleja, James D</au><au>Ng, Wai-Leung</au><au>Bassler, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability</atitle><jtitle>mBio</jtitle><addtitle>mBio</addtitle><date>2016-12-06</date><risdate>2016</risdate><volume>7</volume><issue>6</issue><issn>2161-2129</issn><eissn>2150-7511</eissn><abstract>Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability.
Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>27923919</pmid><doi>10.1128/mBio.01863-16</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-2129 |
ispartof | mBio, 2016-12, Vol.7 (6) |
issn | 2161-2129 2150-7511 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ae97de37ac5347559491c6428f75da83 |
source | American Society for Microbiology Journals; PubMed Central |
subjects | Acetoin - metabolism Butylene Glycols - metabolism Carboxylic Acids - metabolism Gene Expression Regulation, Bacterial Metabolic Networks and Pathways - genetics Metabolomics Pyruvic Acid - metabolism Quorum Sensing Vibrio cholerae - growth & development Vibrio cholerae - metabolism Vibrio cholerae - physiology |
title | Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quorum%20Sensing%20Coordinates%20Cooperative%20Expression%20of%20Pyruvate%20Metabolism%20Genes%20To%20Maintain%20a%20Sustainable%20Environment%20for%20Population%20Stability&rft.jtitle=mBio&rft.au=Hawver,%20Lisa%20A&rft.date=2016-12-06&rft.volume=7&rft.issue=6&rft.issn=2161-2129&rft.eissn=2150-7511&rft_id=info:doi/10.1128/mBio.01863-16&rft_dat=%3Cpubmed_doaj_%3E27923919%3C/pubmed_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-bce7283c4fecc98a1a4ba96bc9692d4647aeb17ce0a7f524ad41bec3084deb113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/27923919&rfr_iscdi=true |